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We prove that the scale map of the zero crossings of almost all signals filtered by a Gaussian filter of variable size
determines the signal uniquely, up to a constant scaling. The proof assumes that the filtered signal can be repre-

sented as a polynomial of finite, albeit possibly high, or
differential operators of Gaussian filters. In this case

der. The result applies to zero and level crossings of linear
the signal is determined uniquely, modulus the null space

of the linear operator. The theorem can be extended to two-dimensional functions. These results are reminiscent

of Logan’s theorem [Bell Syst. Tech. J. 56, 487 1977)].

They imply that extrema of derivatives at different scales

are a complete representation of a signal. They are especially relevant for computational vision in the case of the
Laplacian operator acting on image intensities, and they suggest rigorous foundations for the primal sketch.

1. INTRODUCTION

Images are often described in terms of edges, which are usually
associated with the zeros of some differential operator. For
instance, zero crossings in images convolved with the La-
placian operator of a Gaussian filter have been extensively
used as the basis representation for later processes, such as
stereopsis and motion.! Inasimilar way, sophisticated pro-
cessing of one-dimensional (1-D) signals requires that a
symbolic description first be obtained, in terms of changes in
the signal. These descriptions must be concise, and, at the
same time, they must capture the meaningful information
contained in the signal. Itis clearly important, therefore, to
characterize in which sense the information in an image or a
signal is captured by extrema or zeros of derivatives.

Ideally, one would like to establish a unique correspondence
between the changes of intensity in the image and the physical
surfaces and edges that generate them through the imaging
process. This goal is extremely difficult to achieve in general,
although it remains one of the primary objectives of a com-
prehensive theory of early visual processing.

A more restricted class of results, which does not exploit the
constraints dictated by the signal- or image-generation pro-
cess, has been suggested by work on zero crossings of images
filtered with the Laplacian of a Gaussian. Logan® had shown
that the zero crossings of a 1-D bandpass signal with a band-
width of less than an octave determine uniquely the filtered
signal (up to scaling). The theorem has been extended—only
in the special case of oriented bandpass filters—to two-di-
mensional (2-D) images,3 but it cannot be used for Gaussian
filtered signals or images, since they are not ideally bandpass.
Nevertheless, Marr et al.* conjectured that the zero-crossing
maps, obtained by filtering the image with the second deriv-
ative of Gaussians of variable size, are rich in information
about the signal itself.»5-8 Extensive physiological and
psychophysical data also suggest that the human visual system
uses multiple resolutions in the early processing of images.
The work on spatial-frequency channels, started by Campbell
and Robson,? has shown that detection of, and adaptation to,
gratings is mediated by independent mechanisms with dif-
ferent spatial resolutions. A subset of retinal ganglion cells
is thought to be the first step in filtering the image at multiple
scales. Their center-surround receptive field can be ap-
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proximated by a difference of Gaussian (DOG) function 610

In their paper on edge-detection Marr and Hildreth pro-
posed a few heuristic rules to classify various edges by ex-
ploiting the behavior of zero crossings across four scales. This
was part of a premature attempt to construct a primal sketch
of the image. We expect that the results presented in this
paper will provide the necessary foundations for a more rig-
orous approach to the problem.

More recently, Witkin!? and Stansfield!? introduced a
scale-space description of zero crossings, which gives the po-
sition of the zero crossing across a continuum of scales, i.e.,
sizes of the Gaussian filter (parameterized by the standard
deviation ¢ of the Gaussian). The signal—or the result of
applying to the signal a linear (differential) operator—is
convolved with a Gaussian filter over a continuum of sizes of
the filter. Zero or level crossings of the filtered signal are
contours on the x—¢ plane (and surfaces in the x, y, o space).
The appearance of the scale map of the zero crossing—an
example is shown in Fig. 1—is suggestive of a fingerprint.
Witkin has proposed that this concise map can be effectively
used to obtain a rich and qualitative description of the signal.
Furthermore, it has been proved in one dimension!3:14 and
two-dimensions!4-16 that the Gaussian filter is the only filter
with a “nice” scaling behavior. More precisely, zero crossings
are not created as the.scale of the filter increases. In this
paper, we prove a stronger completeness property: the map
of the zero crossing across scales determines the signal
uniquely for almost all signals (in the absence of noise). The
scale maps obtained by Gaussian filters are true fingerprints
of the signal. Our proof is constructive. It shows how the
original signal can be reconstructed by information from the
zero-crossing contours across scales. It is important to em-
phasize that our result applies to level crossings of any arbi-
trary linear (differential) operator of the Gaussian, since it
applies to functions that obey the diffusion equation. These
results are originally reported by Yuille and Poggio.1®

Our fingerprint theorems can be regarded as an extension
of Logan’s result to Gaussian-filtered, nonbandpass signals
and 2-D images (the 2-D proof, which is an extension of the
1-D proof, is given in full by Yuille and Poggio.1> There are,
however, some important differences between Logan’s theo-
rem and the fingerprints theorems. Logan uses a bandpass
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Fig. 1. The scale map of the zero crossings of the second derivative
of asignal (a 1-D slice of a natural image). The x axis is the abscissa;
the scale, i.e., 0, increases from the bottom to the top. Our theorem
states that this map is a true fingerprint since it uniquely determines
the signal (modulus the null space of the operator).

il

filter, at one scale only, and shows that the zero crossings de-
termine the filtered signal. His proof is nonconstructive and
applies only in one dimension (2-D generalizations exist,3 but
none is fully satisfactory). The fingerprints theorems de-
termine the original signal from the zero crossings of the signal
filtered at different scales. The proof is constructive and
applies in both one and two dimensions. Reconstruction of
the signal is of course not the goal of early signal processing.
Symbolic primitives must be extracted from the signals and
used for later processing. Our results imply that scale-space
fingerprints are complete primitives, which capture the whole
information in the signal and characterize it uniquely. Sub-
sequent processes can therefore work on this more compact
representation instead of on the original signal.

Our results have theoretical interest in that they answer the
question of what information is conveyed by the zero and level
crossings of multiscale Gaussian filtered signals. From a point
of view of applications, the results in themselves do not justify
the use of the fingerprint representation. Completeness of
a representation (connected with Nishihara’s sensitivity) is
not sufficient.l” A good representation must, in addition, be
robust (i.e., stable in Nishihara’s terms) against photometric
and geometric distortions (the general-point-of-view argu-
ment). It should also, if possible, be compact for the given
class of signals. Most importantly, it should make explicit
the information that is required by later processes. Finger-
prints of images may have these additional properties.'8
Fingerprints may make relevant information explicit. This
is still an open question, although recent work by Asada and
Brady!? is encouraging. They consider the fingerprints of the
orientation of the tangent vector of a 2-D shape. They show
that several robust shape primitives—such as dents, corners,
cranks, ends and smooth joins—can be identified. We expect
that these results can be extended to 2-D images by using
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primitives of the primal sketch type.! We should emphasize
that this use of fingerprints is quite different from Witkin’s
proposal.

2. ASSUMPTIONS AND RESULTS

We consider the zero crossings of a signal F(x), space-scale
filtered with a Gaussian, as a function of x, 0. Let F and E
be defined by

E(x,0) = F(x) * G(x, 0),

—_ 2
E(x,o)=fF(§')(1—rexp [—92(’—2{)]“ (2.1)

Notice that E(x, o) obeys the diffusion equation in x and o:

2
§_E = lG_E_ (2.2)

A special case, which is especially interesting for vision, arises
when one considers the zero crossings of a second-order dif-
ferential operator applied to the image. In this case we con-
sider F(x) as the result of applying a second derivative to the
image I(x), that is, F(x) = (d2/dx?)I. We restrict ourselves
to images, or signals, of class P such that E can be expressed
as a finite Taylor series of arbitrarily high order and such that
E is not antisymmetric about all its zeros. Observe that any
filtered image can be approximated arbitrarily well in this way,
because of the classical Weierstrass approximation thereom.
We can make even stronger claims, however. E is not only
continuous but also very smooth, even if F is discontinuous.
More precisely, it is an entire analytic function for two reasons.
First, diffraction-limited optics makes images band limited
and therefore entire. Second, convolution of any bounded
function with the Gaussian is an entire analytic function.
Therefore the restriction to polynomials is justified.

It is easy to show that functions that are antisymmetric
around all their zeros—for instance, a sine wave—have zero-
crossing contours that go vertically upward at all scales and
conversely. Note that, for a finite-order polynomial, functions
antisymmetric about all their zeros only have one zero-crossing
contour. We show below a simple way to extend our results
to this class of functions.

We will show that the local behavior of the zero-crossing
curves [defined by E (x, o) = 0] on the x—o plane determines
F(x) up to a constant scaling factor. We will also discuss its
(obvious) extension to zero and level crossings of linear (dif-
ferential) operators. More precisely, we will prove the fol-
lowing theorem:

Theorem 1: The derivatives (including the zero-order
derivative) of the zero-crossing contours defined by E(x, o)
= 0, at two distinct points at the same scale, determine
uniquely a generic signal of class P up to a constant scaling.

Note that the theorem applies only to signals that have at
least two distinct zero-crossing contours. Another remark
is relevant here: The Gaussian filter seems critical for our
proof, but we cannot show that it is the only filter with this
property. Theorem 1 can be extended to the 2-D case without
difficulties.!415

Theorem 2: Derivatives of the zero-crossing contours,
defined by E(x, y, o) = 0, at two distinct points at the same
scale, uniquely determine a generic image of class P up to a
scaling factor.
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If the signal is not a polynomial, a similar, weaker, result can
be proved. A best solution can always be found, but it may
not be unique. These theorems break down when all the

zero-crossing contours are independent of scale (i.e., the,

contours go straight up in the scale-space fingerprint). This
class of functions is discussed in detail in a forthcoming
paper,? in which it is shown that additional information about
the gradient of the function on the zero crossings issufficient
to determine the signal. An even simpler alternative is to
consider the level crossings of the signal at any nonzero level:
These uniquely determine functions of this class.

The proofs of the theorems are based on the implicit func-
tion theorem, which may break down at isolated points in.the
signal E. For our purposes this does not matter, since we can
avoid these points (the theorems need only two points). For
a more detailed discussion, see Yuille and Poggio.20

The theorems do not directly address the stability of the
fingerprint representation. The first question is related to
the noise sensitivity of reconstructing the filtered function
E(x, o) at the o where the derivatives are taken. Our proof
relies only on two points on the zero-crossing contours. Ex-
ploitation of the whole zero-crossing contours should make
the information content of zero-crossing contours considerably
robust. .

A second question is about the stability of the recovery of
the unfiltered signal F(x) = E(x, 0) and E (x, o). This is
equivalent to inverting the diffusion equation, which is an
ill-posed problem, numerically unstable. Reconstruction is,
however, possible, with an error depending on the signal-
to-noise ratio behavior.21-2?

For vision we are particularly interested in zero crossings
of the Laplacian of a Gaussian.® In this case the image is
determined up to the null space of the Laplacian, a harmonic
function. This indeterminancy is not a problem. It has long
been known that the human vision system is rather insensitive
to linear illumination gradients.

«

OUTLINE OF THE ONE-DIMENSIONAL PROOF

We summarize here the 1-D proof from a slightly different
point of view that clarifies its bare structure.

The proof starts by taking derivatives along the zero-
crossing contours at a certain point. Such derivatives split
into combinations of x and t derivatives (where t = ¢%/2).
Because the filter is assumed to be Gaussian, however, de-
rivatives can be expressed in terms of x derivatives. This is
a key point: Since the filtered signal E(x, t) satisfies the
diffusion equation, the ¢ derivatives can be expressed in term:
of the x derivatives simply by E; = E.,. The next stage is to
find the x derivatives of E(x, t) up to an arbitrary degree n
from such derivatives along the zero-crossing contours in the
x—t plane. We show that this can be done by using two points
on two contours. (It is possible that one point is sufficient,
but we are as yet unable to prove this.) Since E (x, t) is entire
analytic, because of the Gaussian filtering, it can be repre-
sented by a Taylor series expansion inx. Since we know the
values of the n derivatives of E(x, t) with respect to x, we know

its Taylor series expansion and hence E(x, t). The unfiltered
signal F(x), [E(x,t) = F(x) = G(x, t)] can then be recovered
in the ideal noiseless case by deblurring the Gaussian. A
particularly simple way of doing this is provided by a property
of the function ¢, in which we will expand the function F:
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The coefficients of an expansion of F(x) in terms of ¢, are
equal to the coefficients of the Taylor series expansion of E(x,
t). Inthe presence of noise, the recovery of F(x) from E(x,
t) is obviously unstable. It is limited by to signal-to-noise
ratio since high spatial frequencies in the signal are masked
by the noise for increasing ¢. [For instance, if F(x) = 2a,
exp(iux), the filtered signal is E(x, t) = 2a, exp(iux)
exp(—u2t).] Note that since the zero-crossing contours are
available at all scales a reconstruction scheme that exploits
more than two points will be significantly more robust. As
one would expect, the reconstruction of the unfiltered signal
is therefore affected by noise. The reconstruction of the fil-
tered signal E(x, t) is likely to be considerably more robust.
We plan to study theoretically and with computer simulations
the noise sensitivity of the reconstruction scheme.

3. PROOF OF THE THEOREM IN ONE
DIMENSIONAL

We divide our proof into two main steps. In the first, Sub-
section 3.A, we show that derivatives at a point on a zero-
crossing contour put strong constraints on the coefficients of
the Taylor series expansion of E(x, o) [see Eq. (3.A.4)]. Ap-
pendix 1 relates the coefficients of the Taylor series expansion
to the coefficients of the expansion of F(x) = E(x, 0) in
functions related to the Hermite polynomial. In Subsection
3.B we show that the coefficients can be uniquely determined
by the derivatives on a second point of a different zero-
crossing contour.

A. Coefficients of the Signal Are Constrained by the
Zero-Crossing Contours
Let the Fourier transform of the signal I(x) be I(w) and the
Gaussian filter be G(x, ¢) = (1/0)exp(—x2/20?) with Fourier
transform G (w) = exp(—o2w?/2).

The zero crossings are given by solutions of E (x,t) =0.
E(x, t) is an analytic function in x:

EG, t)= Y o, =" (3.A1)
n=0 n!
where
PEQ, t
c, = LE&D (3.A2)

ax"

evaluated at x = xo. The position of xo does not matter. The
implicit function theorem gives curves x (t), which are C> (this
is a property of the Gaussian filter and of the diffusion equa-
tion; see Yuille and Poggio'4). Let { be a parameter of the
zero-crossing curve. Then

d_dco  dtd
d¢ dfox dfat

On the zero-crossing surface, E = 0 and (d"/d{™)E = 0 for all
integersn. Knowledge of the zero-crossing curve is equivalent
to knowledge of all the derivatives of x and ¢ with respect to
¢

We compute the derivatives of E with respect to { at (xo,
to). Since E(x, t) obeys the diffusion equation E; = E,., we
can substitute for partial derivatives with respect to t. The
first derivative is

(3.A3)
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d dt
dg_E(x yt) = f‘ 1+E§_C2

(3.A4)
and is expressed in terms of the first and second coefficients
of the Taylor series expansion of E(x, t).

The second derivative is

d2 dx d2t
aPE = Ot g Gt (f) C2
dx dt dt
2d—§_d§_03 (df) Cy. (3.A5)

Since the parametric derivatives along the zero-crossing curve
are zero, Eq. (3.A4) is a homogeneous linear equation in the
first two coefficients. Similarly, Eq. (3.A5) is a homogeneous
linear equation in the first four coefficients. In general, the
nth equation, (d?/d{™)E(x, t) = 0, is a homogeneous equation
in the first 2n coefficients. We choose our axes such that x,
= 0. Appendix A shows that the coefficients of the Taylor
series expansion of E(x, t) are the coefficients in the expres-
sion of the function F(x) in Hermite polynomials. So we have
n equations in the first 2n coefficients C,. To determine the
C,, uniquely, we need n additional and independent equations,
which, as we will show in Subsection 8.B, can be provided by
considering a neighboring zero-crossing curve at (x1, to).

B. Combining Information from Two Contours

The derivatives at (xo, to) give us n equations in the first 2n
coefficients of the Taylor series expansion of E(x, t) about x
= xo. We can relate them to the expansion coefficients K,
of E(x,t) about a second point x = x5:

(x --x1)

E(x,t) = Z K, (3.B1)

We have n equations for the 2n unknowns K,. Now observe
that

= (x —xy)"

- § o Emx (ap)
n=0 n! n=0 n!

Without loss of generality, we set xo = 0. Then we can use Eq.

(3.B2) to relate the C,, to the K,, by

@ K m(..1ym
Cp= & Ent"ZD7 (3.B3)
m=n m.
and
© Cm m
K= 3 =2 (3.B4)
m=n M.

Thus we express each K,, in terms of C,,’s, and then we com-
bine the equations from two points to obtain 2n equations for
the 2n coefficients C,,. Thus with the results of the next two
subsections the proof will be complete.

C. Independence of the Equations
We have to show that information from two points yields a
unique solution. The first n equations in the 2n first mo-
ments from a point can be written as
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r— -
d¢ d¢
d2x 42t + (15)2 dx dt (E)z o||c, |=o.
d§'2 d§'2 d¢ dod{ \d¢)

' (3.C1)

The matrix of the coefficients is a n X 2n matrix. Note that
its rows are-linearly independent (since the coefficients of the
rth-row vector are zero after the 2rth component).

The next n equations are given by the matrix of the deriv-
atives at a second point, x1, that have the same form as Eq.
(3.C1), multiplied by the coefficients of the expansion at

(x1):
‘(ii__’—‘s: % 0 0o o0 J Kl.T
- ‘kz&
3.C2)

The coefficients K,, can be expressed in terms of the coeffi-

cients C,, by the following transformation (see Subsection
3.B):

2 3 2n
oz 2]
01 =x ... C, K,
=] :]. (3C3
00 1 =x1 ... Cop Ko,
- 1 N b S .

Equation (3.C3) substituted into Eq. (3.C2) gives, together
with Eq. (3.C1), the full set of 2n equations in the 2n un-
knowns C;. The 2n X 2n matrix of the coefficients can be
thought of as originating from the first point (the top half) and
from the second point (the bottom half) on the zero-crossing
curves.

In general, the determinant of this matrix is nonzero.
Intuitively, if the filtered signal has nonzero coefficients of
order higher than 2n, the system of 2n equations would not
have a solution. A proof for this claim is given in Appendix
B. The argument is based on the fact that the determinant
of the coefficients is a polynomial in x;. If this vanishes, then
x1 can be expressed in terms of the first n derivatives at the
two points. We show, however, that in general it is possible
to change x continuously without altering the first n deriva-
tives. This implies that the determinant is almost always
different from zero. The argument breaks down if the filtered
signal is a polynomial of degree 2n or less.

In this case, the determinant must be zero, since the ho-
mogeneous set of equations has at least one solution. At this
point, we have to show that the solution is unique. We first
observe that the determinant of the coefficients of the 2n X
2n system of equations is a polynomial in x;. This polynomial
is nontrivial?3 since the first n and the second n equations
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separately are independent. It follows that the determinant
vanishes at a finite number (at most 2n) of values of x;.

Suppose that the determinant is zero. Observe that x is
known from the position of the zero-crossing curves (x1 is the
distance between the two points at which derivatives are
taken). Typically the roots of the polynomial in x; will be
distinct, and there will be a unique zero eigenvector of the
matrix. Thus we have proved that n derivatives attwo points
determine uniquely (modulus a common scaling factor) the
on coefficients of a polynomial of degree 2n. The case of
multiple-zero eigenvectors is nongeneric, i.e., an arbitrarily
small perturbation in the image would annihilate eventual
multiple-zero eigenvectors. Furthermore, multiple-zero ei-
genvectors of the matrix of degree 2n must also be multiple-
zero eigenvectors of all higher-order matrices, which is even
more unlikely (except on a set of measure zero).

Our proof is limited to filtered function of the polynomial
type (albeit of high degree). We now sketch an argument
suggesting that the result holds also for most filtered functions
E(x, y) that are not polynomials.

Consider the homogeneous system of equations obtained
from two points up to degree n. Denote by A the matrix of
the coefficients. Let A be the matrix of the coefficients of the
inhomogeneous system of equations obtained by dividing all
unknowns C; to Con by the first coefficient. The system, AC’
= Z, where Z is the first column of A’ divided by C;, does not
in general have solutions, as we have shown (see Appendix B).
Furthermore, A has no null vector (if it has, then A’ must also
have a null vector, which is impossible since det A’ = 0).
Then there is a unique least-squares solution of the equation
|AC’ — Z| = 0 given by C’ = A*Z, where A is the pseu-
doinverse of A (see Ref. 24). Thus for every finite C there is
a unique least-squares solution to the system of equations AC’
= A but no exact solution. As n goes to infinity, however, at
least one exact solution must appear.

To summarize, in Subsection 3.A we showed that the coef-
ficients of the Taylor series expansion of the signal are con-
strained by the derivatives of the zero-crossing contours at one
point. In Appendix A we show that the moments are equal
to the coefficients of the expansion of the unfiltered signal
F(x) in our Hermite-like expansion. In Subsection 3.A we
showed how we can combine constraints from two different
points on the zero-crossing contours at the same scale. Fi-
nally, in Subsection 3.B we demonstrated that the equations
obtained in this way from two points determine a unique so-
lution. The stability of the solution was briefly discussed in
Section 2.

The theorems are illusirated by a simple, worked-out ex-
ample in Appendix C.1

4. CONCLUSIONS

We conclude with a brief discussion of a few issues that are
raised by this paper and that will require further work.

Stability of the Reconstruction

Although we have not yet rigorously addressed the question
of numerical stability of the whole reconstruction scheme,
there seem to be various ways for designing a robust recon-
struction scheme. The first step to consider is the recon-
struction of the filtered signal E(x, t). One could exploit the
derivatives at n points—at the given s—and then solve the
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resulting highly constrained linear equations with least-
squares methods. Alternatively, it may be possible to fit a
smooth curve through several points on one contour and then
obtain the derivatives there in terms of this interpolated curve.
The same process must be performed on a second separate
zero-crossing contour. This scheme providesa rigorous way
of proving that, instead of derivatives at two points, the lo-
cation of the whole zero-crossing contour across scales can be
used directly to reconstruct the signal (since the implicit
function theorem shows that the zero-crossing curve is C*).

The second step involves the reconstruction of the unfil-
tered signal F(x). We can construct E(x,0) = F(x) explicitly
in terms of Hermite functions.1®

Degenerate Fingerprints

Our uniqueness result applies to almost all signals: A re-
stricted class of signals with vertical zero crossings in the
scale-space diagram, such as a sine or a square wave, corre-
sponds to nonunique fingerprints. These signals, which will
be discussed in a forthcoming paper? and which correspond
to functions antisymmetric about all their zeros, do not belong
to the class P introduced in Theorems 1 and 2. Interestingly,
level crossings (with a level different from zero) can distin-
guish between elements of this class.

Extensions

Our main results apply to zero and level crossings of a signal
filtered by a Gaussian filter of variable size. They also apply
to transformations of a signal under a linear space-invariant
operator—in particular, they apply to the linear derivatives
of a signal and to linear combinations of them.

Are the Fingerprints Redundant?

The proof of our theorem implies that two points on the fin-
gerprint contours are sufficient. As we mentioned earlier,
several points are probably required to make the recon-
struction robust and to avoid a nongeneric pair of points. We
conjecture, however, that the fingerprints are redundant and

‘that appropriate constraints derived from the process

underlying signal generation (the imaging process in the case
of images) should be used to characterize how to collapse the
fingerprints into more-compact representations. Witkin!!
has already made this point and discussed various heuristic
ways to achieve this goal.

Implications of the Results

As we discussed in the Introduction, our results imply that the
fingerprint representation is a complete representation of a
signal or an image. Zero and level crossings across scales of.
a filtered signal capture full information about it. These re-
sults also suggest a central role for the Gaussian filter in
multiscale filtering that ensures that zero and level crossing
indeed contain full information. Note, however, that the
fingerprint theorems do not constrain or characterize in any
way the differential filter that has to be used. The filter may
be just the identity operator, provided of course that enough
zero-crossing contours exist. Independent arguments, based
on the constraints of the signal-formation process, must be
exploited to characterize a suitable filter for each class of
signals. For images, second-derivative operators such as the
Laplacian are suggested by work that takes into account the
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physical properties of objects and of the imaging process.25:26
We plan to explore this approach in the near future.

Zero Crossings and Slopes

One can ask whether gradient information across scales at the
zero crossings, in addition to their location, characterizes
uniquely the signal and can be used to reconstruct it. Hum-
mel?? has recently shown that this is the case, as one would
expect in the light of our results.!* We have been able to
simplify and extend the elegant proof by Hummel and obtain
the following result?8: Knowledge of zero-crossing surfaces
and magnitude of the x—t gradient over a finite, nonzero in-
terval of the zero-crossing surface is sufficient to determine
the image in the usual sense.

Significance of the Proof

It is important to emphasize that our proof is a uniqueness
proof only. We stress that we do not suggest reconstructing
the signal from its fingerprints.

Fingerprints and the Primal Sketch

The original goal of the primal sketch program was to char-
acterize the different types of intensity changes in the image.
A major obstacle, as it turned out, was the lack of a theory of
multiple scales. The idea of using filters with different sizes,
then at an embryonic stage, has developed into a body of
practical and theoretical results. Fingerprints now provide
away of attacking again the main problem posed by the primal
sketch. The idea is to identify a small number of primitive
image-intensity features—such as step edges and roof
edges—and label them partially in terms of the properties of
the underlying physical surfaces—distinguishing, for instance,
shadows from occlusion boundaries. The initial success of
a similar attempt in the realm of 2-D shape representation by
Asada and Brady?? is quite encouraging.

APPENDIX A: RELATING THE TAYLOR
EXPANSION TO HERMITE POLYNOMIALS

We first review Hermite functions and polynomials. We will
then derive useful relations between Taylor series coefficients
and Hermite coefficients.

The set of Hermite functions is defined by

exp(—x2/2)H, (x)

() =S (A1)
where H,, are the Hermite polynomials:
Ha(x) = (<17 exp(e) ——exp(~27).  (A2)

The Hermite functions are an orthonormal basis of functions
that is complete for L2 functions. The completeness is ex-
pressed by

Z Yn(x)¥n(§) = 8(x — §) (A3)

and the orthonormality by
f ¢n(x)\pm (x)dx = 5nm- (A4)

In general, the Hermite expansion of a L2 function does not
converge uniformly but only in the L% norm. The series will
converge to the function except at a set of points of measure

A. L. Yuille and T. Poggio

zero. At any point, the series can be truncated at a term of
order N such that the remainder of the series is arbitrarily
small. If we consider only a finite number of points where the
series converges, the series can be truncated and the function
approximated arbitrarily well by a finite number of Hermite
components.

The Hermite polynomials defined in Egs. (2) and the set
of functions wy, (x) defined as [see Eq. (3.B6)]

1 dr
wp(x) = ’2"’1—’1'—\/'.—7? a;; exp(—x2) (A5)
are biorthogonal sets of functions, i.e.,
f Hy(x)wp (x)dx = Onm. (A6)

They also obey a completeness property
2 Hp(x)ws () = 6(x — §), (A7)
nm N

and therefore a L2 function f(x) can be expanded in either set
of functions as

f(x) =% apnHn(x),

f(x) =3 bpwn(x), ‘ (A8)
with "
ap = {f,wn),
bn = (f, Hy). (A9)

We now show that the coefficients C, defined by Eq. (3.A2)
are the coefficients of the expansion of F(x) in functions re-
lated to the Hermite polynomials. We expand F(x) in terms
of the functions ¢, (x, o) related to the Hermite polynomials
H,(x) by

onl X )
N = (—1)? H ’ A].O
enlx,0) = (1) LN n(ﬁg (A10)
F(x) = ¥ an(0)en(x, o). (A11)
n=0
The coefficients a, (¢) of the expansion are given by

a,(0) = (wp(x, 0), F(x)), (A12)

where (,) denote inner product in L2 and {w, (x, )} is the set
of functions biorthogonal to {¢,(x, 6)}. The {¢,(x, o)} are
given explieitly by

0-2n-—1 dn
onlx, 0) = ;1—'—\/—-5-\/—; exp(x2/202) o exp(—x2/202)

(A13)
and the w, (x, o) by
Wy (x, 0) = (=1)» (fxnn exp(—x2/202). (A14)
Convolving the {¢, (x, o)} with a Gaussian G(x, o) gives
G(x, 0)*on(x, 0) = Pl;ﬂ; (A15)

hence the a, are given by
a, = (—1)7C,,. (A16)

Therefore knowledge of the image is equivalent to knowing
the a,,.
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APPENDIX B: INDEPENDENCE

We will show that the 2nth-order determinant is generally
nonzero. Recall that the determinant is a polynomial in x;
(of degree at most 2n) with the coefficients being functions
of the first n derivatives of the curves at the two points. If this
determinant always vanished, it would mean that the distance
between any two curves with prescribed values of their first
n derivatives could only take a finite set of values (at most 2n),
whatever the values of the higher order derivation of the
curves. We will show that, by changing the values of the
higher-order derivatives, it is possible to alter the value of x;
continuously while keeping the first n derivation of the curves
constant.

We take two points (0, t1) and (x1, t1) lying on zero-crossing
curves. At these points, we assume that we know the deriv-
atives OE/ox, 0E/ot, 32E/dxdt, ..., up to order n. (This
means that we can reconstruct dx/do, . ..,d"x/do™ from the
implicit function theorem.) We can use the diffusion equa-
tion to write these as E/dx, 82E/dx2, . . . , *"E/dx 2.

So we have

E(O) tl) = 07

oE
—(0,t1) =Ky,
ox

d2"E
e (0,10 = Kan, (B1)
and
E(xla tl) = 0’
oE
o (x1,t1) =Cy,
X
d2"E
axzn (xly tl) = CZn, (B2)

where K1,. .., Ko, and Cy, . . . , Ca, are specified. Now we
will try to alter the value of x, while keeping Ki,...,Ko,and
Cy, ..., Cs, constant.

We have

E(x,t) = f exp(iwx)exp(—w?)w? (w)dw. (B3)

Introduce a deformation parameter A and a function Y(w, ),
where

Yiw, 0) = w2l (w) (B4)

and x1 = x2(M).
Let

E(x,t,\) = f exp(iwx)exp(—w?t)Y(w, Ndw.  (B5)

Allow x1(\) to vary while maintaining Egs. (B1) and (B2).
For the first point this gives

a
—2t) — -
f exp(—w?t) oY Y(w, N)dw =0,

Y
f exp(~w?)w? = (@, Ndw = 0. (B6)
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For the second point we obtain
dxy i 26)(i
an fexp(thl)exp( w?2t)(iw)Y(w, N)dw

0
+ ; —y2t) — =
fexp(zwxl)exp( wt) Y Y(w, N)dw =0,

dx ; (28 (i ) 27
N fexp(zwxl)exp( w?t)(lw)w?"Y (w, N)dw
. 0
+ fexp(thl)exp(—wzt)w% Py Y(w, N)dw =0. (B7)

We want to solve Egs. (B6) and (B7) for (§Y/dN)(w, M) in terms
of dx1/d\. Then the result follows.

Equation (B6) implies that the first 2n moments of Y/
) (w, \) are zero. Equation (B7) means that the first 2n
moments of exp(iwx1)(dY/dN)(w, N) take prescribed values.
[We assume that Y(w, A) is known but that (8/0M)Y (w, A) is
not.]

Expanding exp(iwx;) as a Taylor series [and using Eq.
(B6)], we write Eq. (B7) as

f [ i (fw)™ ﬂr;] exp(—w?t) 9 Y (w, Ndw
m=2n+1 m! )N

dxl

y exp(iwx)exp(—w?t)((w) Y(w, N)dw,

f [ 5 (iw)mi‘-‘i,'f] @2 exp(—w?t) = Y(w, Ndew
m=1 m. 6)\

=— % exp(iwx1)exp(—w?t)(iw)w?Y (w, Ndw. (B8)

The moments of (3/0\) Y(w, A) are
W,, = f exp(—w%)f)—\ Y(w, Nomdw (B9)
and define

—d
Ap = le fexp(iwx1)exp(—w2t)(iw)wPY(w, Ndw.

(B10)
Using Eqgs. (B9) and (B10), we rewrite Eqgs. (B8) as
i '(—lil?- Wm = AI
m=2n+1 M.
© (Lx m—2n
e g = Agnan (B11)

m=2n+1 (m - 2n)‘ "

It will always be possible to solve these equations for Wy, and
there will be infinitely many solutions. To see this, we set
W, =0, m>4n +1 (B12)

and write Eqgs. (B11) as
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(ix1) (ix1)4nt!
e W A
en+)l @+ |l !
(ixy) i )2+l
) ) Wan+1 Agn+1

1! 2n! (B13)

It is possible to solve Eq. (B13) if the determinant is nonzero.
The determinant is of form A (x)@7+1/2 (this follows directly
from the form of the matrix) and so is either zero for all x; or
else never zero. The determinant is also the Wronskian of the
function (ix1)2"*1/2n!, ..., (ix;)4*1/(4n + 1)}, and, as these
functions are linearly independent, it cannot vanish every-
where. Hence the determinant never vanishes, and we can
solve for the W, ’s in terms of the A,’s. Relaxing condition
(B12) gives us infinitely many solutions.

Thus we have shown that it is possible to alter x; contin-
uously without changing the values of the first n derivatives
at both points. This means that the determinant of the
9n-order matrix in the moments will in general be nonzero;
it can be zero only for a finite set of xy, and there is an infinite
set, of possible values for x; compatible with the first n de-
rivatives at the points.

APPENDIX C: EXAMPLES

We now illustrate the theorems by considering some special
cases. If the signal is a low-order polynomial in X, it is pos-
sible to obtain the zero-crossing curves explicitly. We then
use the derivatives of these curves to reconstruct the image,
as in the theorem. These examples also suggest that the de-
rivatives of the curves at a single point will usually give suf-
ficient information to reconstruct the signal.

Suppose the signal F(X) is a second-order polynomial in
X. In this case our result might seem trivial, since the two
roots of the polynomial are known. We are assuming, how-
ever, that only the fingerprint of the polynomial is given but
not its order. The polynomial is

F(X)=1+AX + BX?, (C1)
where A and B are arbitrary coefficients. All the moments
of the signal are zero except for the first two. We convolve this
signal with a Gaussian at scale ¢ and obtain

E(X,0) =1+ AX +BX?+ Bo2 (C2)

We consider the curves given by

E(X,0)=0. (C3)
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X, X, X

Fig.2. The zero crossings of the function (x — x1)% + (x — x2)?, with
X1 = X9, are a semicircle in scale space.

and see that they correspond to circles in the (X, o) plane.
Define X and X, by

X1X2 = l/B,
—(X:+ X,) = A/B. (C5)
Then we can rewrite the equations as
2 - 2
N R

Thus the zero-crossing curve corresponds to a semicircle that
intersects the X axis at X; and X5 (see Fig. 2).
We now parameterize the curve by an angle 6 so that

X = (Xl ; Xz) + (X2 — X cos 6,
a(6) = (M—l) sin 6. (Cn
We calculate the derivatives
aXx _ (XZ—'XI) sin 0
a9 2 |3
dO’ X2 - Xl)
— = | 6.
a0 ( 2 cos (C8)

Recalling that t = ¢2/2, we combine Egs. (C7) and (C8) to
obtain

_ 2
% = (X—Zz—)-{-l sin 6 cos 6. (C9)
We differentiate again to obtain
2 —
(;;2( - (X2 Xl) cos 0
a2t [Xg— X4\2 :
o (———-2 5 ) {cos2 0 — sin? 6). (C10)

We set X5 — X1/2 = b. Then we write the first two equations
atf =6, as

—bsinf; b2sin by cos by
b2 cos? 0y

—b cos 61

M,
M
0 ‘ 0 ] 2 =[Ol. (C11)
—2b3 sin? 0y cos 61 b4 sin? 07 cos? 01] | M, 0
My

We write these in the form

02+ [X2+ (A/B)X +1/B] =0 (C4)

We pick another point on the curve with the same value of o.
This point has parameter 8, = 7 — 6; (with 0 < 03 < 7/2).
This gives us a second equation:
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(C12)

—bsinf; —b2sin by cos by 0 0
b.cos b 2 cos? 6, 2b3sin2 f; cos? f; b*sin2 6y cos? 01
X2
1 X —2}— X33 || My
o 1 X, x2 || M |= [O]
0 0 1 X, My | 10
0 0 0 1 M,

Now we consider the equation for the first two moments
obtained by taking the first derivative at both points. From
Eqgs. (C11) and (C12), this becomes

b2sin 0y cosf1 Xob sin l [M1] _ [0]
—bsinf; —b2sinb; cos by ! ! M, 0

—b sin 01

(C13)

The condition for there to be a solution of Eq. (C13) is that the
determinant of the matrix vanish. This occurs at

X1 = —2b cos 0;. (C14)

From Eq. (C7), we see that this is indeed the distance between
the two points, and so we can solve for M; and My. We ob-
tain

M1 = b cos 01M2. (015)
Substituting for b cos 8; from Eq. (C7) yields

Now o1 lies on the circle

N

at the point where X = 0. Hence

0’12 = —X1X2. (C20)
Note that X; and X2 have opposite signs if X =0 lies on the
circle. Substituting Eq. (C20) into Eq. (C18) gives

F(X)= [X1X2—(X1+X2)X+X2].

1
2\/ 21!'(—X1X2)1/2
(C21)

From Eqgs. (C1) and (C5), we see that this is indeed the original
function up to a scaling factor. Thus we have demonstrated
how to reconstruct the signal.

We should check that X; = —2b cos 0 remains a root of the
determinant for the higher-order determinants. We will
calculate the result for the case n = 2. From Egs. (C11) and

X + X . . . .
M; = [ Xo— ( 1 2) Mo, (C16) (012): the determinant equation becomes (in unconventional
2 notation)
—bsinf; b2sin by cos by 0 0
—bcosf; b2cos?b, —2b3 sin? 01 cos 0, b4 sin? 01 cos? 01| _ 0
—bsinf; —X1bsin0; —b2sin?6; cosfy (=X 2/2))b2?sin f; cos 01 — X1b? sin 0y cos b C '
b cos 0, X1b cos 01 + b2 cos? 0, X12/2b cos 01 + X1b2 cos? 0y + 2b3 sin2 0, cos®f; B
(C22)

where X is the position of the first point. The reconstructed
function is

F(X) = ~M;,1(X — X0, 61) + Mgpo(X — X, 0).  (C17)

where C = (—X3/3!)b sin 0; — (X12/2!)b2 sin 0; cos 6; and B
= (X3/3)b cos 01 + (X12/2!)cos? 01 + X12b3 sin2 0y cos? 0, +
b4 sin? 0, cos? f;. By dividing the matrix by factors common
to rows, this becomes

~1 becosth 0
—1 b cos 01 —2b2 sin? 01

-1 —X1 — b cos 01 "X12/2! - le Ccos 01

1 X1+ bcosby

0
b3 sin2 6, cos 01

=0, (C23)
—X3/8! — X12/2!b cos 6,

X12/2! 4 X1b cos f; + 2b%sin2 0y cos 0y V

Without loss of generality, set Xo = 0. Then,up toa scale
factor,

X1+ X9 X 1 ( XZ)
+ —oy + =
2 V2wor 2427 7 01 (C18)

F(X)=

where V = (X13/31) + (X12/21)b cos 0; + X12b2 sin? 01 cos 8;
+ b3 sin? f; cos f;. By adding and subtracting rows, this re-
duces to
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-1 bcosb, 0 0
0 0 —2b2sin2 0,

0 —X;—2bcosl; —X2/2!— X1b cos b,

0 0 2b2 sin? 0 cos 6, S

b3 sin2 6, cos 01
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=0, (C24)

‘X13/3! - X12/2'b COs 01

where S = X2b2 sin? 0 cos 6; + b3 sin? ; cos f;. Thus the
equation becomes (removing common factors)
-1 b

X1 + 2b cos 0
(X1 +2b cos 6,) 90X, + b

=0 (C25)

cos 01

and can be expressed as

(X1 +2bcosb)(2X;+b+bcosby) =0. (26)

Hence X; = —2b cos #; remains a root for the n = 2 case.

It is clear that the zeros of a polynomial function at one scale
are enough to determine the function up to a scaling factor.
In the general case, however, many of these zeros are complex
and hence are not available from the scale-space map at just
one scale.

ACKNOWLEDGMENTS

Support for work done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology is provided
in part by the Advanced Research Projects Agency of the U.S.
Department of Defense under U.S. Office of Naval Research
contract N00014-80-C-0505. Additionally, T. Poggio was, in
part, supported under U.S. Air Force Office of Sponsored
Research contract F49620/83/C and a grant from the Sloan
Foundation. We are also grateful to E. Grimson, M. Kass, C.
Koch, K. Nishihara, and D. Terzopoulos for useful discussions
and suggestions. Carol Bonomo worked on what text there
was and the equations. The research described in this paper
originally appeared in a longer version as a technical paper,
Artificial Intelligence Memo 730, Massachusetts Institute of
Technology, in October 1983.

REFERENCES

1. D. Marr, Vision, A Computational Investigation into the Human
Representation and Processing of Visual Information (Freeman,
San Francisco, Calif., 1982).

2. B. F. Logan, “Information in the zero crossings of bandpass sig-
nals,” Bell Syst. Tech. J. 56, 487-510 (1977).

3. T. Poggio, H. K, Nishihara, and K. R. K. Nielsen, “Zero-crossings
and spatiotemporal interpolation in vision: aliasing and electrical
coupling between sensors,” Artificial Intelligence Memo 675
(Massachusetts Institute of Technology, Cambridge, Mass., May
1982).

4. D. Marr, T. Poggio, and S. Ullman, “Bandpass channels, zero-
crossings and early visual information processing,” J. Opt. Soc.
Am. 70, 868-870 (1979).

5. W. E. L. Grimson, From Images to Surfaces (MIT Press, Cam-
bridge, Mass., 1981).

6. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R.
Soc. London Ser. B, 207, 187-217 (1980).

7. J. L. Crowley, “A representation for visual information,” Rep. No.
CMU-RI-TR-82-7 (Robotics Institute, Carnegie-Mellon Uni-
versity, Pittsburgh, Pa., 1982).

8. A. Rosenfeld, “Quadtrees and pyramids: hyerarchical repre-
sentation of images,” Tech. Rep. 1171 (University of Maryland,
College Park, Md., 1982).

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

. F. W. Campbell and J.“G. Robson, “Applications of Fourier

analysis to the visibility of gratings,” J. Physiol. (London) 197,
551-556 (1968).

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of
retinal ganglion cells of the cat,” J. Physiol. London 187, 517-552
(1966).

A. Witkin, “Scale-space filtering,” presented at the International
Joint Conference on Artificial Intelligence, Karlsruhe, Federal
Republic of Germany, 1983.

J. L. Stansfield, “Conclusions from the commodity expert
project,” Artificial Intelligence Memo 601 (Massachusetts In-
stitute of Technology, Cambridge, Mass., 1980).

J. Babaud, A. Witkin, and R. Duda, “Uniqueness of the Gaussian
kernel for scale-space filtering,” Fairchild Tech. Rep. 645, Flair
22 (Fairchild Artificial Intelligence Laboratory, Palo Alto, Calif.,
1983).

A. L. Yuille and T. Poggio, “Scaling theorems for zero-crossings,”
Artificial Intelligence Memo 722 (Massachusetts Institute of
Technology, Cambridge, Mass., June 1983).

A. L. Yuille and T. Poggio, “Fingerprints theorems for zero-
crossings,” Artificial Intelligence Memo 730 (Massachusetts In-
stitute of Technology, Cambridge, Mass., October 1983).

J. Koenderink, University of Utrecht, Utrecht, The Netherlands
(personal communication, 1984).

H. K. Nishihara, “Intensity, visible-surface, and volumetric
representations,” Art. Intell. 17, 265-284 (1981).

Clearly, the scale-map fingerprint cannot always be a more
compact description of the signal than the signal itself, unless the
signal is redundant in precisely the way that the fingerprint
representation can exploit. We expect this to be the case for
images, if an appropriate differential operator is used, because
images are not a purely random array of numbers. Usually im-
ages consist of rather homogeneous regions that do not change
much over significant scale intervals.

H. Asada and M. Brady, “The curvature primal sketch,” Artificial
Intelligence Memo 758 (Massachusetts Institute of Technology,
Cambridge, Mass., 1984).

A. L. Yuille and T. Poggio, “Fingerprints and the psychophysics
of gratings,” Artificial Intelligence Memo 751 (Massachusetts
Institute of Technology, Cambridge, Mass., 1984).

A. L. Yuille and T. Poggio, “Fingerprints theorems,” presented
at the Conference on Artificial Intelligence, Austin, Texas,
1984.

S. W. Zucker and R. A. Hummel, “Receptive fields and the re-
construction of visual information,” Tech. Rep. 83-17 (Courant
Institute, New York, N.Y., 1983).

This argument cannot be applied when all zero-crossing contours
are vertical straight lines: It is impossible to reconstruct the
signal.20 In this case the matrices in Egs. (3.3.1) and (3.3.2) take
simple forms.

A. Albert, Regression and the Moore-Penrose Pseudoinverse
(Academic, New York, 1982).

W. E. L. Grimson, “Surface consistency constants in vision,”
Comput. Vision Graph. Inf. Process, 24, 28-51 (1983).

A. L. Yuille, “Zero-crossings and lines of curvature,” Artificial
Intelligence Memo 718 (Massachusetts Institute of Technology,
Cambridge, Mass., 1983).

R. A. Hummel, Courant Institute, New York, N.Y. (personal
communication).

A. L. Yuille and T. Poggio, “Fingerprints and their slope,” Arti-
ficial Intelligence Memo 752 (Massachusetts Institute of Tech-
nology, Cambridge, Mass., 1984).

D. Marr, “Early processing of visual information,” Phil. Trans.
R. Soc. London Ser. B 275, 483-524 (1976).





