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Visual processing in the cortex can be characterized by a predominantly
hierarchical architecture, in which specialized brain regions along the
processing pathways extract visual features of increasing complexity, ac-
companied by greater invariance in stimulus properties such as size and
position. Various studies have postulated that a nonlinear pooling func-
tion such as the maximum (MAX) operation could be fundamental in
achieving such selectivity and invariance. In this article, we are concerned
with neurally plausible mechanisms that may be involved in realizing the
MAX operation. Different canonical models are proposed, each based on
neural mechanisms that have been previously discussed in the context
of cortical processing. Through simulations and mathematical analysis,
we compare the performance and robustness of these mechanisms. We
derive experimentally verifiable predictions for each model and discuss
the relevant physiological considerations.

1 Introduction

Neurophysiological experiments have provided evidence that visual pro-
cessing in the cortex can be characterized by a predominantly hierarchical
system, in which areas farther along the ventral pathway are selective for
increasingly complex stimulus features, accompanied by increasing invari-
ance with respect to stimulus size and position (Hubel & Wiesel, 1962; Perrett
et al., 1991; Logothetis, Pauls, & Poggio, 1995; Tanaka, 1996; Pasupathy &
Connor, 1999).
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Different mechanisms have been proposed to account for the selectiv-
ity and invariance properties of the visual cortex. For instance, one body
of theoretical work involves flexible central mechanisms that dynamically
adjust stimulus scale and position selectivity according to the input (e.g.,
the “shifter circuit” presented in Anderson & Van Essen, 1987). However,
although there is evidence for such dynamic modulation in a variety of
visual areas (Motter, 1994; Connor, Preddie, Gallant, & Van Essen, 1997;
Treue & Maunsell, 1996), it functions at a timescale too slow to account for
the short latencies found in some object recognition tasks (Thorpe, Fize,
& Marlot, 1996). From a different approach, a growing number of models
of visual processing call for some form of pooling from feature detectors
in an earlier stage of processing. The underlying idea was first postulated
by Hubel and Wiesel (1962), to account for complex cell invariance with
respect to spatial phase shifts via linear summation of responses of rectify-
ing, phase-sensitive neurons. Fukushima’s (1980) more general, hierarchi-
cal Neocognitron network achieves invariant responses via a feedforward
network of alternating layers of feature detectors and nonlinear pooling
neurons. More recently, Riesenhuber and Poggio (1999a, 1999b) have re-
produced neurophysiological data from area IT with a hierarchical model
that uses a combination of linear summation and maximum (MAX) opera-
tions.

Pooling by a MAX operation, as opposed to linear summation, achieves
high feature specificity and invariance simultaneously (Riesenhuber & Pog-
gio, 1999b). Suppose the inputs to the system are activity levels of a pop-
ulation of simple cell bar detectors that prefer the same orientation but
have receptive fields in different locations. Summing from these detectors
gives the same total response if the input is an oriented bar contained in
any one of the receptive fields, achieving position invariance. However, the
response is even stronger if multiple bars (e.g., a grating) or background
clutter is present, causing the pooling neuron to lose selectivity as a bar
detector. Taking the maximum of the responses of these feature detectors
alleviates this specificity problem, because then the system output is solely
determined by the response of its most active afferent. Thus, the MAX op-
eration both preserves feature specificity and achieves invariance in a more
robust fashion than linear summation. It is interesting to note that pooling
by the MAX operation is computationally equivalent to scanning an image
with a template, which has been the basis for many recognition algorithms
in computer vision (Riesenhuber & Poggio, 1999b, 2000).

In this study, we are concerned with neurophysiological implementa-
tions of the MAX operation. In addition to its proposed involvement in a
variety of cortical processes such as object recognition (Riesenhuber & Pog-
gio, 1999b), motion recognition (Giese, 2000), and visual velocity estimation
(Grzywacz & Yuille, 1990), the MAX operation is interesting as a basic non-
linear operator that can be implemented by simple, neurophysiologically
plausible models. Throughout this article, we define the ideal MAX oper-



Implementations of the Maximum Operation 2859

ation as a mapping from an input vector x = [x1, x2, . . . , xn] to an output
signal z, where

z ∝ xm ≡ max
1≤i≤n

xi.

More generally, the operation should achieve the following properties:

• Selectivity: The output signal z depends only on the maximum of all
the input signals (sometimes referred to as input amplitude in this
work), xm, and not on the other values.

• Linearity: The output signal z depends linearly on xm with a constant
gain factor g, that is, z = gxm.

The first property is critical to achieving feature specificity. The second prop-
erty is important for optimally recovering information about the strength
of the maximal input. Of course, biological systems can be expected to im-
plement only an approximation to the ideal MAX operation. In some com-
putation models employing the MAX operation, it has been shown that an
approximation to the ideal MAX operation indeed suffices (Riesenhuber &
Poggio, 1999b).

Both the computational and implementation aspects of our models derive
much inspiration from two closely related areas of earlier work on neural
modeling: winner-takes-all (WTA) and gain control networks.

WTA has been widely studied in the neural networks and VLSI litera-
ture (Grossberg, 1973; Kohonen, 1995; Lazzaro, Ryckenbusch, Mahowald,
& Mead, 1989; Starzyk & Fang, 1993; Hahnloser, Douglas, Mahowald, &
Hepp, 2000; Fukai & Tanaka, 1997) and has been used to model cortical func-
tions such as the integration of component motions (Nowlan & Sejnowski,
1995) and attentional selection (Koch & Ullman, 1985; Lee, Itti, Koch, &
Braun, 1999). WTA networks select the afferent input with the largest am-
plitude, but their output is not required to reflect this amplitude and is
often nonlinear or even binary. In general, WTA networks convey the iden-
tity of the “winner neuron” but not its precise amplitude to the downstream
cortical processing areas1, whereas the MAX operation communicates the
amplitude but not necessarily the identity. Gain control circuits make the
response of neural detectors independent of stimulus energy or contrast,
thus exhibiting some invariance in stimulus size or intensity (Reichardt,
Poggio, & Hausen, 1983; Carandini & Heeger, 1994; Wilson & Humanski,
1993; Simoncelli & Heeger, 1998; Salinas & Abbott, 1996). However, typical

1 There are some exceptions: Yuille and Grzywacz’s (1989) divisive feedback network
and Hahnloser’s (1998) linear threshold VLSI network both output the maximal input
under certain conditions, and Lazzaro et al.’s (1989) VLSI network outputs the logarithm
of the maximal input. These implementations sit on the definitional boundary between
MAX and WTA networks.
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gain control circuits fail the linearity requirement because they normalize
all input channels regardless of input amplitude.

The remainder of the article is structured as follows. In section 2, we
isolate a small number of neural mechanisms that may be involved in real-
izing the MAX operation and present four highly simplified canonical cir-
cuits that implement these mechanisms. In section 3, we present our main
simulation results, with the relevant mathematical analysis to be found in
the appendix. In section 4, a number of model-specific predictions are pre-
sented, along with a discussion on potential experimental paradigms that
can be used to verify these predictions. In section 5, we discuss various neu-
ronal implementations of the computational operations involved in each of
the models and compare the relative plausibility of these implementations.
Finally, section 6 relates our efforts to previous work in neural modeling
and makes suggestions for future directions of research. Some of the results
have appeared previously in abstract form (Yu, Giese, & Poggio, 2000a,
2000b).

2 Models

The main issues we explore in this work are divisive2 versus subtractive
inhibition,3 feedforward versus recurrent architecture, and mean firing rate
versus integrate-and-fire description.

We focus on four simple canonical neural models that implement the
MAX operation with well-studied neural principles and which allow some
degree of mathematical analysis (see Figure 1 for schematic diagrams of
a generic feedforward and feedback network). All of these models can be
described as a three-layer neural circuit with an input layer representing
static input signals xn, a symmetrically connected intermediate layer that
transforms the input signals into output signals yn in a nonlinear fash-
ion, and an output unit z that linearly sums the intermediate-layer activ-
ities. In biophysiological terms, the inputs correspond to output signals
from earlier stages of sensory processing. If these earlier feature detectors

2 The physiological mechanisms and functional role of shunting inhibition have been
a topic of intensive theoretical and experimental investigations (Naka & Rushton, 1966;
Torre & Poggio, 1978; Koch, Poggio, & Torre, 1983; Koch & Poggio, 1987; Ferster & Ja-
gadesh, 1992; Holt & Koch, 1997; Carandini, Heeger, & Movshon, 1997; Doiron, Longtin,
Berman, & Maler, 2001; Borg-Graham, Monier, & Fregnac, 1998; Anderson, Carandini, &
Ferster, 2000). The latest evidence on the role of shunting inhibition in the visual cortex
converges on the observation that inhibitory synaptic conductances can rise significantly
and rapidly after stimulus presentation, having a divisive effect on the excitatory synaptic
input (Borg-Graham et al., 1998; Anderson et al., 2000).

3 Intracellular recordings show that half-wave rectification provides a good fit for
intracellular recording data (Carandini & Ferster, 2000).
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Figure 1: Schematic feedforward and feedback models. (a) Feedforward net-
work. (b) Feedback network. Solid arrow: excitatory inputs. Open arrow: in-
hibitory inputs. Circles and lines represent computational units and interactions
rather than explicit delineation of neurons and their processes. Apparent vio-
lations of Dale’s law can be resolved via inhibitory interneurons (Li, 2000), as
seems to be done in the cortex (White, 1989; Gilbert, 1992; Rockland & Lund,
1983).

collectively have a spectrum of selectivity in a certain feature dimension
(e.g., stimulus position), then the output signal would reflect a degree of in-
variance in this dimension. For example, preliminary data indicate simple
and complex cells may play respective roles of xn and z in implementing
the MAX operation in V1 (Lampl, Riesenhuber, Poggio, & Ferster, 2001). A
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dedicated summating interneuron receiving inputs from a number of sim-
ple cells could inhibit their inputs to intermediate-layer neurons or directly
inhibit the dendrites of the complex cell receiving inputs from the simple
cells. A dedicated summating unit might not even be necessary if each sim-
ple cell (or its downstream interneuron) inhibits the synaptic inputs from
the other simple cells to the same complex cell.

The first model is a feedforward network (FFN) with divisive (shunting)
inhibition:

yn = xn f (xn)

c + ∑
k f (xk)

z =
∑

n
yn, (2.1)

where 0 < c � 1 is a small, positive constant that determines the baseline
activities when the input signal vanishes. f (x) is a positive, monotonically
increasing, convex function. In the simulations presented in section 3, f (x) =
xq is used, although the precise form of f (x) is not critical, and we obtained
similar results using f (x) = eqx.

We also examine a divisive feedback network (DFB) variation of the FFN
network:

τ ẏn = −yn + xn f (yn)

c + ∑
k f (yk)

z =
∑

n
yn, (2.2)

where f and c are as for the FFN model and τ is the time constant of the
dynamical system.

The architectures of the divisive models, FFN and DFB, are similar to
those previously proposed for WTA behavior (Grossberg, 1973; Koch &
Ullman, 1985; Fukai & Tanaka, 1997), gain control in the fly visual system
(Reichardt et al., 1983), and attentional modulation on orientation filters in
human vision (Lee et al., 1999).

The third model is a linear threshold network (LIN) with subtractive
inhibition, represented as rectified linear inhibitory inputs:

τ ẏn = −yn −
∑

k

w[yk]+ + xn

z = (w + 1)
∑

n
[yn]+, (2.3)

where the constant w > 0 specifies the inhibitory synaptic strength. The
output gain factor w + 1 in equation 2.3 ensures that z = xm exactly at
equilibrium (see section 3.1), but in fact any constant gain factor would
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work equally well for the purpose of achieving linearity, as discussed in
section 1.

The fourth network is a leaky integrate-and-fire model (SPK), which
directly implements the threshold nonlinearity of the LIN network:

τ ṁn = −mn − w
∑
k �=n

yk + xn

yn(t) =
∑

i
δ(t − ti)

z(t) =
∑

n
yn(t). (2.4)

Unit n fires if mn exceeds threshold θ . The membrane potential, represented
by mn, is lower-bounded by zero and is also reset to zero after each spike at
time ti. One major difference between the SPK model and the LIN model is
that while the dynamic variable y in the LIN model can become negative,
m in the SPK model is lower-bounded by zero, and therefore the impact of
past history on current activities is more limited in the SPK model. Also, the
intermediate-layer units communicate only when one or more of them spike,
making their activities more input-bound. As we will see in section 3, these
differences result in some fundamentally different response properties.

Network architecture similar to the linear threshold networks, LIN and
SPK, has previously been proposed in the context of inhibitory interactions
in the limulus retina (Hartline & Ratliff, 1957), orientation tuning in the
visual cortex (Ben-Yishai, Lev Bar-Or, & Sompolinsky, 1995), gain fields in
the parietal cortex (Salinas & Abbott, 1996), and WTA behavior in analog
VLSI circuits (Lazzaro et al., 1989; Hahnloser et al., 2000).

3 Results

In the following, we examine the linearity and selectivity properties (as
discussed in section 1) of each network. The responses of intermediate-
layer and output-layer units in equilibrium conditions are examined. We
also explore the models’ abilities to approximate the MAX operation un-
der a range of internal and external parameter values: input distribution,
strength of lateral inhibition, number of inputs, initial conditions, and the
presence of noise4. We also point out circumstances in which z is a more
robust reconstruction of xm than ym, the latter of which has been used in

4 In all of our simulations, the inputs are assumed to change much more slowly than
network activities and thus are represented as constant as the network response relaxes
toward equilibrium.
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previous MAX models with similar architecture (Yuille & Grzywacz, 1989).
The relevant mathematical analyses can be found in the appendix.

3.1 Network Dynamics.

3.1.1 Divisive Feedforward Network. As with all of the other models we
present, the feedforward network has no synaptic delay, thus its “dynam-
ics” is trivial in the sense that the output immediately and fully reflects the
system’s processing of the input. From equation 2.1, notice that if f (x) is
sufficiently convex and therefore sufficiently exaggerates the difference be-
tween the maximal input, xm, and the other inputs, then f (xm) dominates
the sum in the denominator of equation 2.1, resulting in ym ≈ xm and yn ≈ 0,
∀n �= m, giving rise to z ≈ xm.

3.1.2 Divisive Feedback Network. For the DFB model, the effect of the
nonlinear operation f is similar, except the difference between ym and yn
is further exaggerated in each iteration until equilibrium is reached. The
network dynamics

ym = xmyq
m

c + ∑
k yq

k

yn = xnyq
n

c + ∑
k yq

k

, ∀n �= m, (3.1)

give rise to the equilibrium relation yn/ym = (xn/xm)(yn/ym)q, which is
consistent if yn = 0, ∀n �= m. It is easy to see that the system has a stable
equilibrium at yn = 0, z = ym ≈ xm.

3.1.3 Linear Threshold Network. Similarly, in the LIN network, given suf-
ficiently strong lateral inhibition, represented by w in equation 2.3, yn, ∀n,
approaches

yn =
∑

k

w[yk]+ + xn. (3.2)

It is easy to see that ym = 1
(w+1)xm

and [yn]+ = 0 is a stable equilibrium of this
system, giving rise to z = xm. In section A.3, we quantitatively describe the
conditions on the parameters that allow the system to reach this equilibrium.

3.1.4 Spiking Network. For the SPK network, since it is deterministic,
given similar initial conditions for each mn, mm always reaches firing thresh-
old before all the other units, resulting in a strong lateral inhibition of its
neighbors in the next time step. More quantitatively, if w ≥ xm − θ , then
[mn − θ]+ tends toward 0 (yn is silent), and mm tends toward xm, inducing a
regular spike train in ym, and therefore in z. The frequency of this spike train
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Figure 2: Different input types. (a) Different input types: ∇ gaussian, o ramp,
* uniform. xm = 1. Because the network connectivity is symmetric in all mod-
els, there is no inherent topology in the output. (b) Corresponding equilibrium
intermediate-layer activities, yn, in the FFN (q = 6). z for FFN: Gaussian—
0.97, ramp—0.95, uniform—0.91. (c) yn activities for LIN (w = 15). z for LIN:
gaussian—1.04, ramp—1.03, uniform—1.00. (d) Evolution of membrane poten-
tial mn in the SPK network in response to “ramp” input: w = 10. Inset shows
average firing rates (units normalized for comparison).

is roughly proportional to the input magnitude, tempered by the “leakiness”
of the integrate-and-fire neuronal model.

3.2 Simulations.

3.2.1 Intermediate-Layer Activities. To illustrate the behavior of {yn} in
each of the models, we use several different classes of inputs, with identical
amplitude α = 1 (see Figure 2a). There are N = 81 input and corresponding
intermediate-layer units:

• Gaussian: width σ = 10, centered at n = 0

• Ramp: xn = α(n/80 + 1/2)

• Uniform inputs with one “winner”: x0 = α, xn = 0.90α, ∀n �= 0
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The responses to gaussian and ramp inputs are interesting visual illus-
trations of how the nonlinear intermediate-layer interactions differentially
attenuate the input signals: the gaussian peak is narrower, and the ramp
has been transformed into an exponential (see Figures 2b and 2c). The “uni-
form” inputs represent a worst-case scenario for some of the models (see
section A.1) and will be used in later simulations to examine the dependence
of z on the magnitude of the submaximal inputs. While LIN completely sup-
presses the nonmaximal inputs, FFN partially suppresses the nonmaximal
inputs. However, z ≈ xm for all types of inputs, for both FFN and LIN, as
part of a general pattern where the final output, z, is much more accurate
and consistent in reporting xm than the maximal intermediate-layer activity,
ym. The DFB network responds very well to all the input types, where only
ym > 0 in every case (the results are difficult to visualize in the format of
Figures 2b and 2c). The SPK network also responds well to all input types,
where only mm ever reaches firing threshold. Figure 2d shows the evolution
of membrane potential of the intermediate units in the SPK model, mn, in
response to a ramp input. The inset shows the corresponding average firing
rate: only ym is active.

3.2.2 Dependence on Submaximal Inputs and Inhibitory Strength. Selectiv-
ity, or the ability to ignore submaximal inputs xn, n �= m, is a critical property
of the MAX operator, as was discussed in section 1. This property is sensitive
to the strength of lateral inhibition, controlled by q in FFN and DFB and by
w in LIN and SPK models. We consider the case where all the submaximal
inputs, xn, are identical, since they provide a systematic means of varying
the submaximal inputs and a worst-case scenario for some of the models
(see the appendix).

Figure 3 shows the dependence of z and ym on the magnitude of the
submaximal inputs xn, while Figure 4 shows the effect of varying inhibitory
strength (q for the divisive models, w for the linear models). For the FFN
model, we see that z = xm for small values of xn and for xn = xm, but
dips slightly for intermediate values, a phenomenon that concurs with our
mathematical analysis (see section A.1). In contrast to z, ym has a much
stronger dependence on xn, dropping to xm/N in the limit of xn = xm. Also,
the strength of inhibition, represented in the model by q, has a very small
effect on z compared to ym, which starts deviating from xm for even small xn
when w is small. A more systematic study of this effect is shown in Figure 4.
These results agree with the general observation that z is much more robust
than ym in reproducing xm in a variety of situations in this and most of the
other models studied.

Divisive inhibition applied recurrently, as demonstrated by the DFB plot
in Figure 3, significantly improves the system’s performance in implement-
ing the ideal MAX operation. z reproduces xm in equilibrium, independent
of xn and q (see also Figure 4), agreeing with our mathematical analysis (see
section A.2).
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Figure 3: Dependence on nonmaximal input. For each network, the magnitude
of xn, ∀n �= m, was varied. N = 3, xm = 1. The firing rate of the spiking network
has been normalized for ease of comparison. z is more robust than ym in general.

The final output, z, of the LIN model has similar response to variations
in xn as that of FFN, although ym in this case behaves more robustly with
respect to the magnitude of the submaximal inputs xn (see Figure 3), over a
range of lateral inhibition w (see Figure 4).

The SPK model behaves well except when xn is large (see Figure 3) or w
is small (see Figure 4), in which case a spike in a unit m causes its own mem-
brane potential to drop to 0 in the succeeding time step, while the other units
receiving inhibition from the spike may be only partially suppressed and be
the first to reach firing threshold next. In this case, the firing can alternate
between ym and yn, and the overall firing rate, z, increases accordingly.

3.2.3 Dependence on Number of Inputs. In some of the previous models
proposed for the realization of the MAX operation or WTA, the performance
of the models was dependent on the number of inputs (Yuille & Grzywacz,
1989). As the number of inputs increased, the system tended to become
increasingly inaccurate in reproducing the maximal input. Our models are
relatively immune to this problem (see the appendix). Figure 5 shows the



2868 Angela J. Yu, Martin A. Giese, and Tomaso A. Poggio

10 20 30
0

1

2

3

q

F
F

N

y
m

z

10 20 30
0

1

2

3

q

D
F

B

y
m

z

10 20 30
0

1

2

3

w

L
IN

(w+1)y
m

z

10 20 30
0

1

2

3

w

S
P

K
y

m
z

Figure 4: Strength of lateral inhibition. Relationship between output and input
amplitude as a function of inhibitory strength, represented by the parameter q
or w. Each network is simulated to convergence, as q or w is varied from 2 to
30. In general, z is more robust than ym. For the DFB model, ym and z overlap
completely. N = 3, xm = 1, xn = 0.9.

network responses to number of inputs varying from 2 to 30 (higher values
of N result in responses similar to those in the case of N = 30). The robustness
of z is striking, even though in the FFN model, ym converges to xm/N, and
in LIN, ym converges to w(xm − xn) (see sections A.1 and A.3 for details).

3.2.4 Dependence on Initial Conditions. The FFN model has no memory
of its past states and therefore no dependence on initial conditions. The DFB
model has, besides the attractor that gives rise to MAX-operator behavior,
other non-MAX attractors. An example is shown in Figure 6b, where the
initial strength of one unit allows it subsequently to suppress the other unit
and dominate the sum z, even though its input ceases to be the maximum.
In section A.2, we examine in more details how this undesirable attractor
can arise. The LIN network, in contrast, has a unique equilibrium for z that
does not depend on the identity of xm or the magnitude of xn, as shown in
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Figure 5: Number of inputs. Dependence of network performance on the num-
ber of inputs, N, ranging from 2 to 30. xm = 1, xn = 0.9, N = 3. FFN: q = 15,
DFB: q = 2, LIN: w = 10, SPK: w = 20.

Figure 6. The SPK model has behaviors very similar to LIN: the intermediate-
layer activities reflect the relative strength of inputs, but the final output z
depends on only the maximal input.

3.2.5 Noise Sensitivity. The reader may well wonder by this point how
our deterministic models fare in the presence of noisy inputs. Does the non-
linear amplification of the signal also have an amplifying effect on the noise
component of the input? To examine this issue, each model is fed with uni-
form inputs (with one “winner”), to which gaussian noise, independently
generated in each iteration, is added. The results are shown in Figure 7.

While the FFN responds with output noise of magnitude comparable
to input noise, the feedback networks actually suppress output noise, in
accordance with previous work on recurrent networks (Yuille & Grzywacz,
1989; Salinas & Abbott, 1996): the recurrent interactions have an averaging
effect on the noise. Note that the noise behavior of the spiking model is not
directly comparable to the other models, as the input noise of the spiking
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Figure 6: Multistability. Dependence on initial conditions. (a) N = 2. Dashed:
unit 1. Solid: unit 2. Iterations 1–200: x1 = 1, x2 = 0.9. Iterations 201–400: x1 =
0.95, x2 = 1. Iterations 401–600: x1 = 0.7, x2 = 1. (b) y1 (dashed) and y2 (solid)
responses of DFB. z depends on initial conditions. (c) y1 (dashed) and y2 (solid)
responses of LIN. z = y1 + y2 does not depend on initial conditions. (d) SPK
responses similar to LIN’s: y1 (dashed) and y2 (solid) activities reflect relative
strength of inputs, but z is consistent and only a function of the maximal input.

model is measured in terms of membrane potential, while the output noise
is measured in terms of firing rate; for all the other models, both the input
and output noise are measured in terms of mean firing rate. Overall, it is
reassuring that despite the presence of signal amplification in the systems,
output noise increases linearly as a function of input noise with acceptably
small slopes.

4 Predictions

The results from the simulation studies presented in section 3 give rise to a
number of model-specific predictions, which are summarized in Table 1.

Some of the predictions are easier to test than others. Preliminary evi-
dence indicates there are single cells in striate cortex (Sakai & Tanaka, 1997;
Lampl et al., 2001) and inferior temporal cortex (Sato, 1989) that respond
to visual stimuli in a MAX-like manner. Given such a “MAX” neuron, it is
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Figure 7: Noise sensitivity. Standard deviation of output for each network over
50 trials, normalized by the expected or noiseless output, as a function of the
amount of uncorrelated noise (measured in terms of standard deviation from
the noiseless input signal) added independently to each unit in each iteration.
N = 3, xm = 1, xn = 0.9. FFN: q = 15, DFB: q = 2, LIN: w = 10, SPK: w = 20.

relatively easy to test whether the neuron exhibits hysteretic behavior. For
instance, given the time courses of a MAX neuron’s responses to two stimuli
separated in space, its combined response should be point-wise maximum
of the two responses if it is nonhysteretic, but be dominated by the one that
has the shorter-latency and dominant transients if it is hysteretic. In fact,

Table 1: Model-Specific Predictions.

Prediction Model FFN DFB LIN SPK

Hysteresis no no no yes
Sensitive to GABAA blocker yes yes no no
Sensitive to GABAB blocker no no yes yes
Effect of GABA blocker on z none none ↑ ↑
Sparse yn activity no yes no no
Effect of larger N on ym ↓ none ↓ none
Noise suppression no yes yes yes
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preliminary data from Lampl et al. (2001) give some support to the latter
behavior. In this work, the only model we examined that exhibits nontrivial
hysteresis is the DFB model. However, it has been shown previously that
if a little self-excitation is imposed on the LIN model, then it would also
exhibit hysteresis (Hahnloser, 1998).

In principle, it should also be possible to apply antagonists locally to
different inhibitory neurotransmitters, such as GABAA or GABAB, in order
to weaken the proposed inhibitory connections involved in implementing
the MAX operation. For example, GABAA or other inhibitory receptors with
reversal potential near resting potential would be critical for implementing
the divisive shunting inhibition used in the FFN and DFB models; GABAB
or other inhibitory receptors with very negative reversal potential could
be involved in subtractive inhibition involved in the LIN or SPK models.
Local application of these blockers therefore might be able to differenti-
ate whether the MAX operation involves divisive or subtractive inhibition,
which are most likely to be involved in cellular or network implementa-
tions of the MAX operation, respectively. Moreover, the specific effects of
suppressing the inhibitory synapses could be different according to our sim-
ulation results: when the inhibitory activities are suppressed, LIN and SPK’s
output should be increased, while FFN and DFB’s output should not be sig-
nificantly affected. Successful implementation of these experiments would
provide valuable insight into the underlying mechanisms of the MAX op-
eration, although in practice, interpretation of these experiments might be
difficult, as the relevant synapses might live and interact on distal dendrites
while recordings will mainly be in the soma.

If experimental data could give some indication as to what xn and yn
represent, whether they are computed synaptically within the recorded cell
or represent input and output to other neurons, more specific predictions
might then be tested: sparseness of yn activation, effect of N on ym, and even
effect of input noise on z.

5 Biophysiological Considerations

Even in the absence of more detailed experimental data, some reasonable
conjectures can be made about the relative plausibility of the models based
on biophysiological considerations.

The feedforward divisive inhibition model can be implemented in mul-
tiple ways. Two particularly attractive implementations emerge if equa-
tion 2.1 is broken down in two distinct ways:

yn = xn ∗ f (xn)

c + ∑
k f (xk)

(5.1)

yn = xn f (xn) ∗ 1
c + ∑

k f (xk)
. (5.2)
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Equation 5.1 can be thought of as a multiplication between xn and the output
of a normalizing network of mutually inhibitory neurons that also receive a
copy of the input xn. Such network interactions have been been previously
proposed to account for response of V1 neurons receiving afferent LGN
inputs and lateral cortical inputs (Carandini & Heeger, 1994). Equation 5.2
represents another possibility: the gating of a nonlinear operation on the
input, g(xn) by an inhibitory pooling neuron computing

∑
k f (xk)), where

g(xn) ∝ xn f (xn) is necessary for achieving the linearity property of the ideal
MAX operation. Such multiplicative gain control interactions have been
observed in the parietal cortex (Salinas & Abbott, 1996), insect visual system
(Hatsopoulos, Gabbiani, & Laurent, 1995), area LIP (Andersen, Bracewell,
Barash, Gnadt, & Fogassi, 1990), and the superior colliculus (Van Opstal,
Hepp, Suzuki, & Henn, 1995).

The biophysiological considerations of the DFB model are similar to
those of the FFN model, involving two main possibilities of decompos-
ing the product xn f (yn)

c+
∑

k
f (yk)

, as described before. The main differences are

that for the normalization implementation, the mutually inhibitory units
are represented by yn rather than xn; similarly, for the gain control im-
plementation, the gain factor now depends on yn rather than xn, and the
gain-controlled neuron receives inputs from both xn and yn and computes
g(xn, yn) ∝ xn f (yn). One significant advantage of this recurrent model over
the feedforward model is that it works well with little or no nonlinear am-
plification of the signal by the operator f , as we have seen in the simulation
results in section 3 and the mathematical analysis in section A.2. Another
computational advantage of this recurrent model is that it performs very
efficient noise suppression.

The implementation of the LIN and SPK models is straightforward. Each
yn probably represents the activity of a single neuron, which receives inhibi-
tion from its neighbors and excitation from the input. One ambiguity is that
the summation can be done by either a dedicated summation neuron (in
which case, self-excitation is needed for the SPK model), or the unit could
be directly inhibited by its neighbors via dendritic inputs (in which case,
self-inhibition is needed for the LIN model).

6 Discussion

In this work we have reviewed and analyzed a number of neural circuits
that provide good approximations to the MAX operation, which has been
proposed to play a significant role in various processes of the visual system.
The MAX operation is interesting because it is an example of a fundamen-
tal, nonlinear computational operation that can be realized with neuro-
physiologically plausible mechanisms. The models were chosen in order to
demonstrate different neural principles for the realization of this compu-
tational operation. They are simple enough to allow an understanding of
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the underlying parametric dependencies and some mathematical analysis.
The neural mechanisms on which our models are based are also fundamen-
tal in models for contrast gain control and winner-take-all, both of which
have been extensively studied in the context of important cortical processes.
These processes and the MAX operation may well share similar or overlap-
ping neural substrate.

From our mathematical and simulation analyses, it appears that each
model is endowed with a variety of distinct computational properties, al-
though they may be difficult to test in experimental settings. The biophys-
iological considerations for the various models are also complex and non-
trivial. In general, in the absence of more detailed experimental data, the
differences in the model behaviors do not lead to immediate support for
one model over any other.

This work gives rise to a number of potential directions of future theoret-
ical research. One obvious extension of this work is to analyze neurophys-
iologically more detailed and more realistic models, which could involve
more stochastic descriptions of network dynamics, or biophysiologically
more realistic neurons. For instance, software such as Neuron or Genesis
could be used to simulate dendritic interactions and shunting conductances
explicitly. Another interesting question is how any of these models may be
learned through experience or wired up during development. Mechanisms
similar to those proposed by Fukushima (1980) to explain learning in the
Neocognitron may be explored. The design of these future studies is contin-
gent on crucial experimental data that are not yet available. The simulation
and mathematical results from our work give rise to a number of predic-
tions, which can be used to guide future experimental investigations on the
MAX operation. Although the experimental demonstration of the different
properties predicted by the models is nontrivial, this preliminary theoretical
analysis should be a helpful first step for the preparation of more detailed
neurophysiological experiments.

Appendix

The mathematical discussions here are intended to help explain and sup-
port the various simulation results presented in section 3. We are mainly
interested in how well the networks satisfy the selectivity and linearity
properties of the MAX operation and how they are affected by internal and
external parameters, such as the magnitude of the nonmaximal inputs, the
number of inputs, the strength of inhibition, and initial conditions. We also
point out why z is a more robust reconstruction of xm than ym, the latter of
which has been used in previous MAX models with similar architectures
(Yuille & Grzywacz, 1989).
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A.1 Divisive Feedforward Network. Given equations 2.1, and using a
polynomial form of f , f (x) = xq:

z =
∑

y
yn ≈

∑N
n=1 xnxq

n∑N
k=1 xq

k

= xm
1 + ∑

n�=m rq+1
n

1 + ∑
k �=m rq

k

= xmL,

where we have defined the ratio rn ≡ xn
xm

and L ≡ 1+
∑

n�=m
rq+1

n

1+
∑

k �=m
rq

k

. Note 0 ≤
L ≤ 1, since 0 ≤ rn ≤ 1. Simple calculus manipulation shows that L reaches
minimum (and z deviates maximally from xm) when the ratios are

rj = q(1 + ∑
k �=m rq+1

k )

(q + 1)(1 + ∑
k �=m rq

k)
,

a quantity independent of j. In other words, the selectivity of the model, that
is, the ability of z to ignore the submaximal inputs, is most challenged when
xn are identical. Identical nonmaximal inputs therefore provide a worst-case
scenario for the FFN model, where z can be expressed as

z = xm
1 + (N − 1)rq+1

1 + (N − 1)rq

and ym as

ym = xm

1 + (N − 1)rq .

Note that the dependence of z on N is minimal compared to that of ym, since
z has an extra O(N) term in the denominator to balance out the numerator
(see Figure 5a). Notice also that the dependence of z on r is not monotonic:
z ≈ 1 when r ≈ 0 or r ≈ 1, but is somewhat less for intermediate values of
r, consistent with the simulation results in Figure 3a.

A.2 Divisive Feedback Network. As we discussed in section 3.1, there
is an attractor at z = xm, a phenomenon that is independent of q, N, or {rn}.
This is reflected in the robustness of the model’s output in Figures 3b, 4b,
and 5b. However, there also exist other attractors that do not approximate
the MAX operation, such as the ones shown in Figure 6b. A closer look at
the system of equations 3.1 makes the reason apparent: this set of equations
is stable if any yn ≈ xn, and all the other yk = 0, k �= n. In particular, it means
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that if yn has been the active unit, then it may continue to dominate even if
its input becomes smaller than those of its neighbors. Finally, let us note that
under the special condition where all inputs are equal, xm = xn, then there
is a unique attractor where z = xn and each yn = z/N, as long as the initial
conditions are not such that yn = 0, ∀n (the system also has a degenerate,
unstable equilibrium at yn = 0, ∀n).

A.3 Linear Threshold Network. The attractor giving rise to the ideal
MAX operation, as described in section 3.1, requires [yn]+ = 0, ∀n �= m.
Now we examine conditions under which this cannot be fulfilled. First, note
that given equation 2.3, subtracting the expression for yn from ym, gives the
convergence

ym − yn = βn ≡ xm − xn.

Thus, if βn < xm/(w + 1), then ym − yn < xm/(w + 1), and it cannot be such
that ym = xm/(w + 1) and yn ≤ 0. In this case, Equation 3.2 still holds, and
we have the following:

∑
n

[yn]+ =
∑

j: yj>0

yj

=
∑

j: yj>0


xj −

∑
k: yk>0

wyk




= xm +
∑

j: yj>0,j�=m

xj − Jw
∑

k: yk>0

yk.

Rearranging the terms,

(1 + Jw)
∑

j: yj>0

yj = xm +
∑
j�=m

xj = xm + (J − 1)xm −
∑
j�=m

βj,

where J is the total number of units such that yj > 0. Then we can express
z as

z = (w + 1)
∑

j: yj>0

yj

= Jw + J
Jw + 1

xm − w + 1
Jw + 1

∑
j�=m

βj

= xm + w + 1
Jw + 1

∑
j�=m,yj>0

(
xm

w + 1
− βj

)
,
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We knowβn < xm/(w+1), so z is maximized ifβj is minimized toward 0 and if
J is maximized toward N(see Figure 3c). It is clear that using uniform inputs
with decreasing βn is a valid way of examining the network response as the
inputs approach the worst-case scenario: z = xm(1+(N−1)/(Nw+1)), where
the error factor is inversely proportional to w (see Figure 4c) and relatively
independent of N (see Figure 5c). For identical and nonzero βn = β, and
large w,

z = xm + (w + 1)(N − 1)

Nw + 1

(
xm

w + 1
− β

)
≈ xm,

where the error term is roughly independent of N. We also have the equi-
librium condition,

(w + 1)ym ≈ xm

N
+ (N − 1)

N
wβ,

indicating that ym has an inverse dependence on N initially, but then be-
comes relatively independent of N as N becomes large.

A.4 Spiking Network. Because of the deterministic dynamics of equa-
tion 2.4, given identical initial conditions, ym always fires before the other
units can reach the threshold, and therefore ym is the only unit that is active.
In the degenerate case that yn is identical for all inputs, all the units fire syn-
chronously, and the overall firing rate, z, is N times higher (see Figure 3d).
These behaviors are independent of magnitude of w (see Figure 4d), as long
as it is large enough to reset all the membrane potential, mn, of all the non-
firing cells to 0 after each spike. If this is not the case, then the unit receiving
the second largest input xm2 may have greater membrane potential than mm
after unit m fires: mm2 > mm, and may subsequently be the first to reach
the firing threshold, as is the case in Figure 6d. In this way, the firing may
alternate between two or more units, and the overall firing rate z increases
as w decreases.
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