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IIE COMPUTATIONAL DEMANDS

of image understanding are among the
most extreme of any computer application.
A medium-resolution color image contains
750,000 bytes, and images are typically
acquired 30 times a second, giving an input
data rate of 23.6 megabytes per second.
Many operations must be performed on
each pixel to extract the simplest features
from an image; yet this is only the begin-
ning of the interpretation process.

A typical goal of an image-understanding
system is'to construct a three-dimensional
model of the image sensor’s environment.
Such an interpretation might require iden-
tifying hundreds of different objects.
Other goals might include determining
the sensor’s position with respect to land-
marks, identifying independently moving
objects, or inspecting objects. Complicat-
ing factors include noise, occlusion, un-
even lighting, shadows, specular reflec-
tions, and motion effects.

Pattern recognition techniques, by them-
selves, are inadequate for this task. Con-
sider an image of a window: Parts of the
window can be reflective, transparent, or
both; it also introduces distortion and spec-
ularity. Despite the fact that the window
has no characteristic pattern, we perceive

it as a separate object because of the

To BRING THE POWER OF PARALLEL PROCESSING TO VISION
SYSTEMS, RESEARCHERS IN THE StraTEGIC COMPUTING
PROGRAM DEVELOPED NEW HARDWARE, SOFTWARE TOOLS,
ALGORITHMS, AND PERFORMANCE METRICS. WHAT ARE THE
RESULTS OF THIS EFFORT? A BETTER UNDERSTANDING OF
BOTH PARALLEL ARCHITECTURE AND MACHINE VISION.

window’s surroundings and our knowledge
of the properties of glass. Even if the win-
dow were perfectly transparent, we could
infer the existence of a pane of glass from
the presence of the window frame. In fact,
much of what we “see” in natural scenes is
really inferred from partial information.
Fortunately, the tremendous computa-
tional demands of vision are balanced by
the potential for applying parallel process-
ing. For example, vision clearly involves
both sensory (low-level) and knowledge-
based (high-level) processing. Between
these two levels of abstraction it is useful
tointroduce one or more levels of symbolic
(intermediate-level) processing. Symbols

range in complexity from descriptions of
extracted image events (such as edges or
regions) through perceptually useful group-
ings of events (such as geometric figures or
surfaces), to abstract descriptions of object
parts or entire objects.

Each of these abstraction levels can be
processed in parallel with the other levels.
Furthermore, within each level there is a
great deal of potential parallelism. Low-
level vision is amenable to single-
instruction multiple-data stream, data par-
allel, or pipelined parallel computation.
(The sidebar on page 37 provides defini-
tions for these and other terms found be-
low.) Intermediate-level visioncaninvolve
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both single-instruction multiple-data and
multiple-instruction multiple-data stream
parallelism — the former to process the
thousands of extracted image events and
abstract symbols that are common in an
interpretation, and the latter to permit inde-
pendent, simultaneous operations on col-
lections of symbolic data. High-level pro-
cessing can involve multiple cooperating
and competing interpretation strategies, ac-
cess to a large knowledge base, transforma-
tions and projections of models, and so on.

Another approach would be to use mul-
tiple visual modules running in parallel to
analyze a scene. Texture, color, motion,
depth, and object boundary analysis can all
proceed simultaneously. Further, the vi-
sion problem is simplified if the seeing
agent has active control over its sensors.
Thus, large-grain parallelism is also ap-
propriate for simultaneously planning ac-
tions, updating asynchronous databases,
monitoring physical progress, and allocat-
ing sensors.

Because of the size and complexity of
vision systems, it is impractical to use a
software simulation of a parallel processor
to explore parallelism in vision. Conven-
tional uniprocessors are barely sufficient
for vision research in which real-time per-
formance is not required. Interposing a
layer of architectural simulation further
reduces their performance to the point that
research is difficult to conduct, and real-
time experiments are out of the question.
To bootstrap research into parallelism for
vision, parallel hardware was needed.

Of course, new parallel hardware is use-
. less without software tools. Vision research
has extensive requirements for software
development environments. Thus, given
the hardware with its basic set of tools,
additional tools to support vision research
were still necessary. Once the tools were
available, developing applications became
feasible, and researchers began to provide
feedback to the architects and toolsmiths.

However, as useful as subjective and
anecdotal evidence is, architects also need
empirical data on which to base design
decisions. The next step was to develop
mechanisms for evaluating machine per-
formance on vision tasks. This article
examines each step in this process: the
hardware that was built, the tools that were
developed, the applications that were im-
plemented, and the performance evalua-
tion that was carried out.

New parallel hardware

Toward the goal of developing advanced
parallel-processing architectures, DARPA’s
Strategic Computing architecture program
built several new and powerful parallel
processors. Of these, three of the more
mature approaches were considered ger-
mane to vision: Single-instruction multi-
ple-data, multiple-instruction multiple-data,
and systolic processing. The vision com-
munity chose three commercially built
examples reflecting these approaches,

CONVENTIONAL
UNIPROCESSORS ARE BARELY
SUFFICIENT FOR VISION
RESEARCH IN WHICH
REAL-TIME PERFORMANCE
IS NOT REQUIRED.

respectively: the Connection Machine, the
Butterfly, and the Warp. In addition to
their usefulness for vision, the three types
of parallelism are widely applicable to
many other domains. A fourth approach,
more specific to vision, was also selected
for implementation as a noncommercial,
experimental system. This machine, the
Image-Understanding Architecture, in-
volves a heterogeneous combination of
parallel processors with single-instruction
multiple-data, multiple-instruction multiple-
data, and other capabilities.

The Connection Machine. The Con-
nection Machine! is a massively parallel
single-instruction multiple-data processor,
produced by Thinking Machines Corpora-
tion, that has been successfully applied to
many problems in low- and intermediate-
level vision. Several different program-
ming models have emerged, since the ma-
chine provides multiple communication
modes.

The Connection Machine model CM-2
can be configured with between 16,384
and 65,536 processors operating under a
single instruction stream. Each processor
has a 1-bit arithmetic logic unit with 64

Kbytes of memory (optionally with a
floating-point arithmetic accelerator
shared among 32 processors). The proces-
sors have two modes of communication:
the North, East, West, South network and
the router. The NEWS network provides
communication between neighboring pro-
cessors in a rectangular grid of arbitrary
dimension. The router sends messages
between processors in the machine via a
hypercube connection network. The Con-
nection Machine also has facilities for re-
turning to the host machine the results of
various operations on a field in all the
processors; it can return the field’s global
maximum, minimum, sum, logical AND,
and logical OR.

To manipulate data structures with more
elements than the number of processors
in the array, the Connection Machine sup-
ports virtual processors. A single physi-
cal processor can operate as a set of virtu-
al processors by serializing operations in
time and partitioning each processor’s
memory. This is otherwise invisible to
the user.

Figure 1 shows how the Connection
Machine is used at MIT, where it and a
movable two-camera eye-head system com-
prise a laboratory environmert called the
MIT Vision Machine. Columbia Univer-
sity researchers have also used the Con-
nection Machine to develop new software
tools and applications.

The Warp. Another computer employed
in DARPA vision research is the Warp,
designed at Carnegie Mellon University in
prototype form. General Electric Corpora-
tion constructed the production versionand
distributed it to several DARPA sites,
including Martin Marietta Corporation,
Hughes Aircraft Corporation, Advanced
Decision Systems, ESL, the University of
Maryland, Analytical Sciences Corpora-
tion, and Science Applications International
Corporation. The second prototype and first
production machines were installed at
Carnegie Mellon.

The heart of the Warp computer is a
short linear array, normally consisting of
10 cells (although up to 20 cells have been
used), each of which is a 10-Mflops com-
puter.? Cell-to-cell communication has high
bandwidth (40 Mbytes per second) and low
latency (200 nanoseconds). The cells have
local program and data memory, and can
be programmed in a Pascal-level language

24

IEEE EXPERT




Interface unit

Warp cell array

Figure 2. The Warp.

called W2, which supports communication | host, which communicates with the array | to a workstation that provides the user
between cells using asynchronous word- | viaaseparate memory and aninterfaceunit | interface.

by-word send and receive statements. The | (see Figure 2). The external host is at- One of the Carnegie Mellon Warp ma-
systolic array is attached to an external | tached to a digitizer and frame buffer, and chines was installed on the Navlab robot
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Figure 3. he Navlab.

vehicle, a custom-built, fully instrumented
testbed for robot navigation, based on a
standard van chassis (see Figure 3). The
Navlab is equipped with cameras, a laser
range finder, a global positioning system
receiver, and an inertial navigation system.
The Navlab carries all of its computational
equipment on board, making it a fully au-
tonomous robot vehicle.?

The Butterfly and Max-Video. The third
DARPA-based commercial system that
affected vision research is the Butterfly
Plus parallel processor, developed by Bolt
Beranek and Newman/Advanced Comput-
ers Incorporated. The latest version has
128 nodes, each consisting of an MC68020
processor, an MC68851 memory manage-
ment unit, an MC68881 floating-point unit,
and 4 Mbytes of memory. The Butterfly is
a shared-memory multiprocessor with non-
uniform memory access times; each pro-
cessor can directly access any memory in
the system through a network (called an
omega network or butterfly network) of
4x4 crossbar switches. The network as-
sures that one processor can access anoth-
er’s memory in a “reasonable” time —
approximately 4 log n times slower than it
can access its own memory for an n-pro-
cessor computer.

At the University of Rochester, the But-
terfly has a VME bus connection that mounts
in the same card cage as a Max-Video
system and motor controller boards for a
binocular robot head (see Figure 4). The

Max-Video system is a commercially built
pipelined parallel image-analysis system.
It allows an arbitrary number of indepen-
dent boards to be cabled together to achieve
many frame-rate image-analysis capabili-
ties, including digitization and storage,
8x8 or larger convolution, arbitrary signal-
processing computations, pixelwise image
processing, crossbar image-pipeline
switching for dynamic reconfiguration
of the image pipeline, lookup tables, histo-
gramming, and feature location. The But-
terfly can control Max-Video boards
through programmable registers.

The Image-Understanding Architec-
ture. The University of Massachusetts and
Hughes Research Laboratories developed
this noncommercial, experimental system
for the Strategic Computing program. The
IUA represents a hardware implementa-
tion of the low, intermediate, and high
levels of representation and processing that
are encountered in many knowledge-based
vision systems.* It consists of three differ-
ent, tightly coupled parallel processors.
The low- and intermediate-levels are con-
trolled by a dedicated array control unit,
which takes its directions from the high
level. As Figure 5 indicates, each of these
parallel processors provides different gran-
ularities and modes of parallelism. The
low level is a fine-grained, processor-per-
pixel array of bit-serial processing ele-
ments. The intermediate level is amedium-
grained multicomputer consisting of 16-bit

Figure 4. The Rochester Robot.

processors, and operates in both multiple-
instruction multiple-data and single-
program multiple-data modes. - The high
level is a coarse-grained multiprocessor
oriented toward manipulating models, in-
ferencing, running Lisp, and so on.

As a proof-of-concept demonstration,
TUA researchers have built and are testing
a 1/64th-scale vertical slice of the system.
However, a detailed software simulator
has been in use since 1987 and has allowed
researchers to construct software before
completing the hardware and to evaluate
many design aspects. A second generation
of the TUA is under development that will
incorporate straightforward but significant
enhancements, and a third generation is
already being planned.

New software tools

To use parallel-processing hardware,
vision researchers musthave effective soft-
ware tools beyond the basic tool set of
operating systems, languages, and debug-
gers. For example, researchers need

« interfaces for nonstandard image ac-
quisition and display,

« controllers that direct robots to point
and focus cameras,

» libraries of basic image-processing and
vision operations, and

» tools for examining and analyzing im-
agery and processing results.

Each site employing a parallel archi-
tecture developed a different set of tools.
This was partly due to differences in the
architectures themselves, the particular
applications in which machines were being
used, and the differences betweenresearch-

ers’ approaches at each site. The result is
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a diverse collection of tools, leading to
significant cross-fertilization of ideas be-
tween the sites.

The MIT Vision Machine. As mentioned
earlier, the Connection Machine at MIT is
closely integrated with a custom eye and
head sensory platform on a robot arm. MIT
researchers developed interface software
for this specialized hardware that precisely
controls the viewpoint and camera para-
meters (for example, focus) for laboratory
experimentation. Images from the cameras
are digitized and sent to the Connection
Machine for processing. Working with re-
searchers at Thinking Machines, MIT also
developed an extensive set of vision sub-
routines in *Lisp (a data-parallel version of
Lisp) for the Connection Machine as well as
tools for examining system output.

The overall organization of the MIT
Vision Machine is shown in Figure 6. Inde-
pendent modules corresponding to differ-
ent visual cues have been developed to
process images in parallel: they extract
edges, compute disparity from stereo im-
ages, estimate optical flow due to motion,
compute true texture attributes such as den-
sity and orientation of texels, and estimate
the spectral albedo of surfaces.

A parallel-vision environment. Colum-
bia University has developed several pro-
gramming environments that support re-
search on stereo and texture algorithms in
a parallel image-pyramid style.> The first
environment, consisting of simulators of
various grain sizes, supported multiresolu-
tion algorithms for the Columbia
Non-Von supercomputer (since discontin-
ued). The foundation for the final pro-
gramming environment is a highly efficient
pyramid machine emulator that executes
on a Connection Machine.

The programming environment reduces
communication contention by optimally
mapping the pyramid onto the hypercube
network, assisted by pipelining. Mesh
operations take only a small, fixed amount
of overhead proportional to the hypercube’s
size; parent-child operations runin a smaller
fixed time independent of hypercube size.

Image functions let the user create pyra-
mid data structures, load and unload various
pyramid levels, move data up and down,
and perform standard low-level and
intermediate-level vision operations on data
structures, such as convolution and other

Intermediate level

Dual-port shared memory
EEEEE SEEE R

«512X612 (256K) array of 1-bit processing elements
« SIMD associative/multiassociative .
+ Processes sensory data

-« Stores 15 seconds of imagery

i

detection

multiresolution operations. Implemented
and tested parallel-vision algorithms
include pyramid-based edge extraction,
binary search correlation, hierarchical

Figure 6. Overall organization of the Vision Machine.

stereo matching, multiresolution gray-level
statistical texture segmentation, generalized
Hough algorithms, and a novel autocorrela-
tion-based shape-from-texture algorithm.
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mag
. end sobel;

Figure 7. An Apply implementation of Sobel edge detection.

The Warp and I-Warp programming
model. A critical step in developing a new
paraltel machine is developing program-
ming models that help define and restrict
the programmer’s view. Warp’s develop-
ers tried both systolic and data-partitioned
models. In systolic models they divided
the algorithm among processors; for exam-
plé, convolution is broken down into a
series of add/multiply steps, done on a
pipeline of cells. Warp’s highI/O rate and
low latency made it possible to do this
efficiently with very little memory use.
However, it was difficult to apply this
technique uniformly to a wide class of
algorithms. As a result, data-partitioned
methods were used for the bulk of com-
puter vision programming on Warp.

The Apply programming language im-
plements the data-partitioned model for
image processing in a stable, easy-to-use,
architecture-independent manner.® An
Apply program is an Ada-like procedure
that represents the inner loop of an image-
to-image operation.

An Apply implementation of the Sobel
edge detector is shown in Figure 7. The
first line defines the input, output, and
constant parameters to the function. The
input parameter Inimg is an input image
window, a 3x3-pixel window centered about
the current pixel-processing position, which
is filled with the value 0 when the window
lies outside the image. This same line de-
clares the constant and output parameters
to be floating-point scalar variables. The
third line defines Horiz and Vert, which are
internal variables used to hold the results
of the horizontal and vertical Sobel edge
operator. The Sobel convolution is com-
puted in the straightforward expressions in
lines 5-7.

Apply has been implemented on Warp
and I-Warp (Intel’s custom VLSI version)’
as well as on a number of other machines.
Apply programs are shorter than and as fast

as hand-written code on Warp and Sun
machines, and often faster.

To provide a stable base of software for
image processing and a set of examples of
image-processing programs, Carnegie
Mellon developed the Web library. Web
consists of about 140 routines, 80 percent
of which are written in Apply, and the rest
in W2. The Apply programs include al-
most all the local image-to-image opera-
tions. Web routines include basic image
operations, convolutions, edge detectors,
image gray-value operations, smoothing
operations, image feature computations,
binary image operators, type and coordi-
nate conversions, color conversion, orthog-
onal transformations, warping, pattern gen-
eration, and multilevel image processing.
Web has also been used as a source of test
programs for the I-Warp simulator and
hardware.

Psyche, Zebra, and Moviola. Univer-
sity of Rochester researchers have devel-
oped various software tools and environ-
ments to analyze and debug parallel
programs.

Vision applications need many parallel
operations of different sorts to run simulta-
neously and cooperate intimately. In ana-
lyzing parallel programs, the focus of con-
cern is no longer simply the internal state
of a single process, but must include the
internal states of potentially many differ-
ent processes and the interactions among
those processes. We can still use a cyclic
methodology, but four issues complicate
analysis:

* Parallel programs often exhibit non-
repeatable behavior.

« Interactive analysis can distort a paral-
lel program’s execution.

* To analyze large-scale parallel pro-
grams, we must collect, manage, and present
an enormous amount of data.

* The execution environment (exhibit-
ing extensive parallelism) and the analysis
environment (a single, comprehensive user
interface) differ dramatically.

Psyche. The Psyche operating system
provides both an interface for implement-
ing multiple models as well as conventions
for interaction across models.® Rather than
providing a fixed set of parallel-program-
ming abstractions to which programming
environments must be adapted, Psyche pro-
vides an abstraction mechanism from which
many different user-level abstractions can
be built in user space. Through a low-level
kernel interface, developers can write new
pack-ages on demand and use underlying
mechanisms to communicate between
models.

Psyche structures memory as a collec-
tion of passive data abstractions called
realms, which include both code and data.
With appropriate protocols, realms can
provide shared data structures, monitors,
communication channels, message or I/O
buffers, and a host of other abstractions for
process interaction. Depending on the de-
gree of protection desired, invoking arealm
operation can be as fast as an ordinary
procedure call or as safe as aremote proce-
dure call between heavyweight processes.
The kernel creates virtual processors to
handle computation within a protection
domain. These domains maintain the bound-
aries between distinct models of parallel-
ism. Psyche has run two user applications,
a five-processor robotic balloon-bouncing
demonstration and a 12-processor program
that uses vision and manipulation to play
checkers with a person.

Zebra. Rochester also developed Zebra,
an object-oriented programming interface
to the Max-Video image-processing board.
Zed, built on Zebra, is a menu-driven sys-
tem that lets programmers create new in-
struction words or modify existing ones
directly from the keyboard.

Moviola. The core of the Moviola tool-
kit® consists of facilities for recording ex-
ecution histories, a common user interface
for interactively and graphically manipu-
lating those histories, and tools for exam-
ining and manipulating the program state
during the replay of a previously recorded
execution.

One form of Moviola outputis adiagram
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in which time flows from top to bottom.
Events that occur within a process are
aligned vertically, forming a time line for
that process. Edges joining events in dif-
ferent processes reflect temporal relation-
ships resulting from synchronization. Event
placement is determined by global logical
time computed from the partial order of
events collected during execution. Each
event is displayed as a shaded box whose
height is proportional to the event’s dura-
tion (see Figure 8).

Moviola’s user interface provides a rich
setof interactive operations to control graph-
ical displays. A programmable interface
lets the user write Lisp code to traverse the
execution graph and gather detailed, appli-
cation-specific performance statistics.

The IUA simulator, libraries, and
Apply. The University of Massachusetts
has developed a parallel programming en-
vironment!? as part of the IUA project. The
environment consists of the IUA simula-
tor, a graphical user’s console, extensions
to the C and Forth languages, an Apply
compiler, and a C++ compiler.

The IUA simulator executes object code
for both the low- and intermediate-level
processors on an instruction-by-instruction
basis. It can be configured to simulate any
size of IUA within the limits of the host’s
memory. (A full-scale [IUA contains more
than three gigabytes of RAM.)

The user’s console provides a graphical
interface to the simulator (and eventually
to the hardware). The console is a window-
based application that lets the user simulta-
neously monitor the status of all the pro-
cessors in the low-level array. As shown in
Figure 9, the left-hand side of the display
shows various registers and memory loca-
tions in the machine as small images, and
the right-hand side provides an enlarge-
ment of any one of the small images. The
enlarged display lets the user directly in-
teract with the processors in the low-level
array by using the mouse. The right-hand
window can also display the status of any
intermediate-level processor.

The C and Forth languages have been
extended to permit the user to declare vari-
ables in the low-level processors, and to
manipulate them with calls to a library of
subroutines, in a manner similar to the C-
Paris facility on the Connection Machine.
The libraries support standard arithmetic
operations on both variable-precision inte-
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Figure 9. IUA simulator display.

gers and 32-bit floating-point values, and | IUA produces C code with these same
various common vision routines. The | extensions, allowing functions written in
Apply compiler for the low level of the | Apply tobe fully integrated with C programs.
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Figure 10 (far left). One frame from the
motion sequence input to the MIT Vision
Machine.

Figure 11 (left). Brightness edges computed
by the Canny algorithm.

Figure 12 (below). Features extracted and
discontinuities detected.
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The Web library has been successfully
compiled with the ITUA Apply compiler
and is also available for use. The language
of choice for programming the low level of
the TUA is a set of standard C++ class
libraries that have been developed to sup-
port an image-plane data type and opera-
tors on that type. Programs written on se-
quential machines with these class libraries
can then be recompiled for execution on
the IUA merely by selecting a different
runtime library.

New algorithms

Research under the Strategic Comput-
ing vision program involves experimenta-
tion in the laboratory and in the context of
real applications. Laboratory experimen-
tation is necessary so that the many factors
affecting the performance of a new vision
algorithm can be carefully controlled, there-
by permitting the algorithm to be fully
characterized. In the final analysis, how-
ever,. the proof of many an algorithm’s
value is its performance under the stress of
a real-world application.

Low-level vision algorithms. The MIT
Vision Machine tries to integrate several
vision cues to perform recognition and
navigation tasks in unstructured environ-
ments.'! It is also a testbed for progress in
low-level vision algorithms, their parallel
implementation, and integration. Parallel
algorithms that execute in close to real
time have been implemented for edge de-
tection, stereo, motion, texture, and sur-
face color. Their ‘integration leads to a
cartoon-like map of discontinuities in the
scene. The output is interfaced to a parallel
model-based recognition algorithm. The
current implementation of the MIT Vision
Machine uses two different kinds of edges.
The first consists of zero-crossings in the
Laplacian of the image, filtered through
an appropriate Gaussian. The second con-
sists of the edges found by Canny’s edge
detector.

The Drumbheller-Poggio stereo algo-
rithm!2 produces data that comprise one of
the inputs to the integration stage of the
Vision Machine. MIT researchers are ex-
ploring various extensions to this algo-
rithm as well as the use of feedback from
the integration stage. The stereo algorithm

runs on the Connection Machine with good
results on natural scenes at an average
speed of one second.

The motion algorithm computes the op-
tical-flow field, producing sparse or dense
output depending on whether it uses edge
features or intensities. This algorithm as-
sumes that image displacements are small
and that the optical flow is locally constant
in a small region surrounding a point. It
uses the sum of the pointwise squared dif-
ferences between a patch in the first image
centered at one point and a patch in the
second image centered at a point corre-
sponding to a displacement of the first
point. This summation operation is effi-
ciently implemented on the Connection
Machine using scan computations. Each
processor collects a vote indicating sup-
port that a patch of surface exists at that
displacement. The algorithm iterates over
all candidate displacements, recording each
sum. Using nonmaximum suppression, the
algorithm finally chooses the displacement
that maximizes support. The correspond-
ing displacement is the velocity of the
surface patch.

Results from the low-level vision mod-
ules can be noisy and sparse. They are
smoothed and made dense by exploiting
known constraints within each process.
This is the stage of data approximation,
restoration, and fusion, performed using a
Markov random-field model. The system
output is a set of labeled discontinuities of
the surfaces around the viewer. These sur-
face properties are attributes of the physi-
cal world rather than of the images. The
system has been implemented on the Con-
nection Machine using multiple communi-
cation modes, including routing operations,
scanning, and distance doubling.

Figures 11 and 12 show the results of the
Vision Machine applied to the scene in
Figure 10 and some of the intermediate
steps. Figure 11 shows the brightness
edges computed by the Canny algorithm
at two different spatial scales. In the mo-
tion sequence, the teddy bear was rolling
slightly on its back from one frame to the
next. The first column of Figure 12 gives
the results of the stereo, motion, texture,
and color algorithms after initial smooth-
ing to make them dense.!! They represent
the input to the Markov random-field
process that integrates them with bright-
ness edges. The central column of Figure
12 shows the reconstructed depth (from
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Figure 13. A cartoon representaton of the
scene resulting from the union of depth and
motion discontinuities.

stereo), motion flow, texture, and color.
The last column shows the discontinuities
found by the Markov random-field process
in each of the cues. Figure 13 shows a
“cartoon” reconstruction, resulting from
the union of the discontinuities in depth,
motion, and texture, overlaid on the orig-
inal image.

The output of the integration stage pro-
vides a set of edges labeled in terms of
discontinuities of surface properties, and
represents a usable input to a model-based
recognition algorithm. !> Thus far, only dis-
continuities are used for recognition in the
MIT Vision Machine; future work at MIT
will also incorporate the properties of
surfaces between discontinuities into the
recognition process. Tucker!* and Voor-
hees!® have provided other recognition al-
gorithms for the Connection Machine.

Parallel texture algorithms. Columbia
University researchers implemented and
tested parallel versions of Andrew Wit-
kin’s shape-from-texture algorithm, and
improved the method by developing a new
algorithm for determining local surface
orientation, from rotationally invariant
textures, based on the two-dimensional
two-point autocorrelation of an image.!6

This new method is computationally
simple and easily made parallel. It uses
information from all parts of the image,
assumes only texture isotropy, and re-
quires neither texels nor edges in the
texture. When applied to locally planar
patches of real textures such as roads, dirt,
and grass, the resulting slant and tilt are
highly accurate, even in cases where hu-
man perception is so difficult that people
must be assisted by the presence of an
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artificially embedded circular object, as
in Figure 14.

The algorithm has several mathematical
elegancies, some of which aid its parallel-
ization, and others make it robust to noise.
For example, one of these makes the ex-
traction of slant and tilt information equiv-
alent to determining the parameters of an
ellipse, and also reduces the algorithm’s
sensitivity to noise generated by charge-
coupled-device cameras, such as the hori-
zontal smearing of pixels.

Intrinsically straightforward, the paral-
lel method was implemented on the Con-
nection Machine, where it became even
more elegant. Using image shifts to com-
pute a finite window of the autocorrela-
tion, we can compute surface orientation
for surface patches in constant time. The
Columbia team successfully demonstrated
the algorithm on various natural textures.
However, the assumption of isotropy ap-
peared critical. Follow-up attempts to use
the method for nonisotropic textures, even
with preset heuristic biases, gave disap-
pointing results.

Fusing stereo and texture. Columbia’s
main objective was to develop, implement,
and integrate parallel multiresolution
stereo and texture algorithms for deter-
mining local surface orientation and depth,
to be used by the navigation systems of an
autonomous land vehicle. The work on
fusing texture and stereo had three compo-
nents. The first was a new method for
fusing multiple textural cues within a shape-

from-texture component. The second was
a novel method for handling stereo corre-
spondence, surface interpolation, and sur-
face segmentation all in one step, based on
a new, unifying mathematical foundation.
The third was a system for controlling the
two systems’ interaction. The full system
was tested on real imagery, and parts of the
system were parallelized.!’

The first system assumed a coarse degree
of parallelism to fuse five textural cues,
such as shape-from-eccentricity and shape-
from-spacing, into one machine perception
of surface orientation. The system was dem-
onstrated on both synthetic and real surface
imagery (see Figure 14), in which some of
the surfaces were curved and some even
transparent (the first system to do so), with
robust results: slant and tilt were usually
recovered within five degrees (see Figure
15). Anunanticipated further result was that
the system also performed limited texture
classification, based on the differential
strengths with which the individual meth-
ods responded to a textured stimulus.

The second system was one-step stereo,
based on applying the theory of reproduc-
ing kernel-based splines. Quantitatively,
this results in a significantly higher
percentage of correct left-right stereo
matches. The system dealt naturally with
occluded objects and with sharply slanted
surfaces, such as roads as seen from a
vehicle. It even handled transparency.

Columbia combined the stereo and
texture processes in a third system. This
system combines information in two

Figure 15. The avtocorrelation computation,
indicating surface slant and fil.

fundamentally different ways — by intra-
process and interprocess integration—and
therefore admits both fine and coarse par-
allelization. Communication is standard-
ized via a blackboard. In operation, the
stereo process uses the relative accuracy
and sparseness of the centroid of texels to
begin feature localization, later switching
to traditional zero-crossings. The work is
further characterized by the choice of a
smoothness measure; roughly, it minimizes
variation in the 1.5 (not the second) deriv-
ative, a value supported by recent human
psychophysical measurements. To proper-
ly balance stereo, which is dense, with the
sparser texture processing, the system
achieves final integration by weighted aver-
age. Applying this fusion technology to a
real-world problem, Columbia researchers
built an oceanographical system now being
used by the university’s Lamont-Doherty
Geological Observatory toinfer from grav-
itational information the geological struc-
tures below the ocean floor.

Parallel surface interpolation. The out-
put of middle-level vision algorithms is
often a sparse depth map, or a sparse sur-
face-orientation map, or both. Researchers
often need to interpolate full surfaces (such
as roads) through such points. Simulating
a fine-grained pyramidal architecture,
Columbia quantitatively evaluated the
efficiency and accuracy of known and
novel depth-interpolation methods.!® The
optimal method can be mapped onto a
pyramid machine in a way that requires
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local computations only; other methods,
though more robust, intrinsically require
global computations.

Robot navigation applications. Warp
has been applied to several robot naviga-
tion problems. It is often used as a proces-
sor for sensory data; however, it performs
more than low-level vision functions. In
several cases it has been used for all pro-
cessing up to the detection of the primary
object of interest, either obstacles or the
road in front of the vehicle, depending on
the system.

Carnegie Mellon researchers applied
Warp to road following and navigation in
several different approaches. Warp pro-
cessing included image pyramid genera-
tion, feature point detection, pyramid-based
correlation, and thresholding. Later sys-
tems used color and texture classes to clas-
sify pixels according to whether they re-
sembled the color and texture of the road or
the background. Using Warp, the color
classes were updated at each step. In the
most advanced system, SCARF (for “su-
pervised classification applied to road fol-
lowing”), all visual processing up to road
detection was implemented on the Warp
array.’ Images were fed to the Warp pipe-
line, and the predicted road positions were
output after processing (the color classes
were maintained internally in the pipe-
line). The total time for execution on Warp
was one second, with two seconds for some
limited displays and Navlab control.

Carnegie Mellon applied a conventional
back-propagation neural-network training
algorithm on Warp to road following. In
ALVINN (“autonomous land vehicle in a
neural net”), the bottom layer of the three-
layer neural network was supplied with a
reduced-size image, and the top layer gave
the predicted steering angle for the vehicle
to stay on the road. A person drove the
vehicle during training, and the road image
and steering angle were fed to the back-
propagation algorithm on Warp. The result
was that after just a few minutes of train-
ing, the neural network could successfully
drive the vehicle.

Apply and W2 applications. Apply has
been used in various ways at Warp sites.
For example, it was used to implement the
G-State algorithm as part of the SCORPIUS
project, which involved constructing a sys-
tem to aid in the interpretation of aerial

Table 1. Tasks from the first DARPA image-understanding benchmark.

11x11 Gaussian convolution of a 512x512 8-bit image
Detection of zero-crossings in a difference-of-Gaussians image

Construct and output a border pixel list

Label connected components in a binary image

Hough transform of a binary image

Convex hull of 1000 points in 2D real space

Voronoi diagram of 1000 points in 2D real space

Minimal spanning tree across 1000 points in 2D real space

Visibility of vertices for 1000 triangles in 3D real space

Minimum-cost path through a weighted graph of 1000 nodes of order 100
Find all isomorphisms of a 100-node graph in a 1000-node graph

reconnaissance photos. G-State includes
several steps, namely edge mask convolu-
tion, thinning, linking, and removing head-
erless links.

Apply was also used in synthetic-
aperture-radar image analysis as part of the
Adries automatic target recognition project.
Adries used several Web routines that are
written in Apply, including convolution.
Adries also used W2 programs from Web,
such as connected components, and devel-
oped new W2 programs.

The Mosaic project was a hardware ef-
fort at ESL intended to support threat anal-
ysis as part of the Strategic Defense Initia-
tive. Mosaic used Apply programs from
Web to develop a stereo image-
processing system based on image pyra-
mid generation followed by pyramid-based
image correlation to calculate disparity.
ESL also created new W2 code to perform
correlations.

The most extensive application of new
Apply and W2 programming outside of
Carnegie Mellon was at Martin Marietta in
the DARPA-sponsored Autonomous Land
Vehicle project.'” Warp was used for the
off-road vehicle navigation, whichinvolved
transforming a laser scanner range image
into an obstacle position map, and then
calculating a path through the map. Crite-
ria, such as maximum obstacle height and
maximum road tilt, were used to determine
whether a particular vehicle orientation at
a particular point was acceptable. An Ap-
ply program calculated acceptable orienta-
tions at every point, and then linked them
together in a path that took the vehicle to
the goal.

Pipelined parallel image-analysis
experiments. Pipelined image processors
can produce histograms and Fourier trans-
forms many times per second, report the
locations and characteristics of blobs in
an image, and do template matching and
other image-processing applications at

frame rates. Using the Max-Video sys-
tem, Rochester has demonstrated fast
object recognition with color histograms,
tracking moving objects, binocular
vergence, binocular stereo, full-frame
kinetic ‘depth calculations, foveal-
peripheral processing for learning skilled
camera-motion sequences, segmentation
by sensor motion, disparity-filtered seg-
mentation, and the detection and local-
ization of moving objects by a moving
observer.

Performance analysis

Applications demonstrate the utility of
parallel hardware and software tools. How-
ever, comparing architectural performance
based on different applications is quite
difficult. Bach application is developed
with different requirements, constraints,
and goals, some of which depend on the
architecture itself. To better understand
the performance of different architectures,
we must program them to execute the same
task — typically a benchmark. Thus, to
analyze the performance of the parallel
architectures developed under Strategic
Computing, DARPA sponsored a series of
image-understanding benchmark exercises.

In 1986, the University of Maryland de-
veloped the first benchmark for DARPA,
consisting of the tasks listed in Table 1. The
results of testing the benchmark on several
machines have been published elsewhere.?’
However, it is difficult to compare the re-
sults because no methods were specified for
the tasks, so that the timings were often
more indicative of the programmer’s clev-
erness than of a machine’s capabilities. In
addition, input data were not provided, so
that the test data developed by different
groups varied considerably in difficulty.

Because the benchmark consisted of
isolated tasks, it did not measure perfor-
mance related to interactions between
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Table 2. Execution times in seconds for the data set sample.

Sun 3 CM-2 Warp IUA
Total executiion time 797.88 43.60 0.0844445
Overhead 5.08 0.25500 14.14 0.0139435
Labeling connected components 27.78 0.10000 3.98 0.0000596
Computing rectangles from intensities  6.50 0.25336 5.50 0.0161694
Median filter (floating point) 246.66 0.01500  10.70 0.0005625
Sobel (floating point) 135.48 0.00800 0.48 0.0026919
Total time in low-level processing 421.50 0.63000 34.80 0.0334269
Initial graph match (probe list) 24.46 0.42 0.0155662
Match-strength probes 72.98 9.10 0.0327150
Hough probe 253.70 15.30 0.0068430
Presentation of results 24.80 2.60 0.0022826

vision system components. Also, no defi-
nition of a correct solution was provided.
Having a known correct solution is impor-
tant, since problems in vision are often ill-
defined, and it is possible to argue for the
correctness of different solutions involv-
ing different amounts of computation. In a
benchmark, however, the goal is to test the
performance of different machines doing
comparable work.

The second benchmark. The major
result of the first DARPA benchmark
exercise was further insight into how to
construct an image-understanding bench-
mark.?! A new benchmark was needed to
test system performance on a task-that
approximates an integrated solution to a
vision problem. DARPA assigned the task
of constructing the Integrated Image-
Understanding Benchmark to the Univer-
sity of Massachusetts at Amherst and the
University of Maryland. A complete solu-
tion with test data was distributed. The
specification was designed to minimize
shortcutting in solving the problem, yet
be flexible enough to permit implementa-
tion on very different types of parallel
architectures.

Task description. The new benchmark
involves recognizing an approximately
specified 2.5-dimensional mobile sculp-
ture in a cluttered environment, given im-
ages from intensity and range sensors. A
set of models is provided that represent a
collection of similar sculptures, and the
task is to pick the model that best matches
the scene. The intention is that neither of
the input images, by itself, is sufficient to
complete the task.

The sculpture is a collection of 2D rect-
angles of various sizes, brightnesses, ori-
entations, and depths. Each rectangle’s

orientation is normal to the viewing axis,
with constant depth across its surface. The
images are constructed under orthographic
projection. While the rectangles have no
intrinsic depth component, depth is a fac-
tor in the spatial relationships between
rectangles; hence the notion that the sculp-
ture is 2.5-dimensional.

The clutter consists of additional rectan-
gles, similar to those in the sculpture. Rect-
angles may partially or completely occlude
other rectangles. A rectangle can also dis-
appear when another of the same bright-
ness or slightly greater depth is directly
behind it.

Test images are created by selecting one
model from a set, then rotating and trans-
lating it as a whole. Its individual elements
are then perturbed slightly. Next, a collec-
tion of spurious rectangles is created. All
of the rectangles are then ordered by depth
and drawn in the two image arrays. Finally,
Gaussian distribution noise is added to the
depth image.

The processing scenario. Processing
begins with low-level operations on the
intensity and depth images, followed by
grouping operations on the intensity data
that extract candidate rectangles. These
are used to form partial matches with the
models. Multiple hypothetical poses can
be established for each model. For each
pose the depth and intensity images are
probed from the top down. Each probe
tests a hypothesis for the existence of a
rectangle in a given location in the images.
Rejection of a hypothesis, which requires
strong evidence that a rectangle is absent,
eliminates the pose. Confirmation of the
hypothesis results in the computation of a
match strength for the rectangle, and an
update of its representation in the model.
After all the probes have been performed,

an average match strength is computed for
each pose and the greatest of these is se-
lected as the best match.

The benchmark specification lists the
steps to be applied in implementing a solu-
tion. These steps include labeling connected
components, K-curvature, extracting cor-
ners with geometric constraints, median
filter, Sobel, convex hull, rectangle param-
eter computation, graph matching, probe
list generation, probing of image data (win-
dowed Hough transform and pixel classifi-
cation), model match evaluation, and dis-
play of selected and updated models.
Furthermore, for each step, arecommended
method is described. However, since some
methods might not work for a given archi-
tecture, implementers can substitute other
methods for individual steps. When an im-
plementation must differ from the specifi-
cation, the implementer must supply a jus-
tification.

Results. Table 2 shows the results of
running the benchmark on a Sun 3/160, a
CM-2, a Warp, and an IUA. The times for
the CM-2 were extrapolated from execu-
tion on a machine with 32,768 processors
to one with 65,536 processors. Only the
bottom-up portion of the benchmark was
implemented on the Connection Machine.
The Warp implementation used the sys-
tolic array to perform the majority of the
bottom-up processing and all probes of
the image data, while the Sun 3 host
machine performed all the model match-
ing as well as some of the image process-
ing in parallel with the Warp. The TUA
implementation was run on the JUA sim-
ulator, configured to represent a full-scale
system with 262,144 low-level proces-
sors and 4,096 intermediate-level proces-
sors; however, even a detailed simulation
will not be as accurate as execution on
actual hardware.

The table shows that all the parallel
architectures provided a significant speed-
up over a conventional uniprocessor built
with comparable technology. The massively
parallel single-instruction multiple-data
arrays in the Connection Machine and the
TUA are obviously faster than the Warp for
low-level image processing. However, raw
speed is only one element of machine per-
formance. The Warp is also considerably
smaller and less expensive than these ar-
rays. The goals of strategic computing in-
cluded developing architectures to address
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a wide range of applications, and the Warp
fills an important niche in the application
spectrum.

Current issues

Research that began with the Strategic
Computing vision program has continued
to unfold, and the experience gained from
this research is forming the basis for new
efforts in parallel hardware and software.
For example, as a result of the increased
processing speed gained from parallelism,
we now know that vision is much easier in
an active rather than a passive context: The
added technical complications of an active
agent are offset by increased information
flow and reduced uncertainties. This change
in the basic approach to vision comple-
ments nicely the Strategic Computing
vision goal of developing large reactive
systems.

Some of the most ambitious computing
applications are reactive systems charac-
terized by extensive real-time interaction
with a largely unpredictable environment
that is too complex to be modeled, moni-
tored, or controlled completely within the
system’s resources. These systems are of
great importance to such diverse fields as
industrial manufacturing, command and
control applications, undersea monitoring
and exploration, and automated navigation
and reconnaissance.

The University of Rochester is currently
exploring the following parallel-vision soft-
ware architecture issues:

« Active vision. Using pipelined and
multiple-instruction multiple-data stream
parallel architectures, active vision should
interact with its environment at a low level
and with planning and uncertain inference
at a high level. The potential power of this
approach has barely been tapped.”*

« Multimodel programming. Different
notions of process, communication, shar-
ing, and protection are needed at different
levels of the vision problem.

« Real-time issues. Computing and phys-
ical resources are generally inadequate to
achieve optimal reactive behavior. System
architectures and scheduling disciplines
should be designed to achieve suboptimal
but acceptable results in real time.

« Debugging and performance analysis.
Existing tools do not provide debugging

within and between different models of
parallelism, or on- and off-line performance
measures for feedback to applications and
for tuning based on long-term behavior.

Analog and hybrid VLSI implemen-
tations of vision machine components.
Once algorithms and systems are perfected,
it makes sense to compile them in silicon to
make them faster, cheaper, and smaller.
Rather than directly hardwiring algorithms,
“algorithmic hardware” designs must be
considered that utilize the local, symmetric

PIPELINED PROCESSING OR
OTHER METHODS OF TIME-
SHARING COMPUTING POWER
MIGHT BE ABLE TO
COMPENSATE FOR THE LOWER
DEGREE OF CONNECTIVITY.

nature of low-level vision problems. This
requires an iterative process, as the algo-
rithm influences the hardware design, and
hardware constraints influence the algo-
rithm.

Within the integrated circuit, we can
represent image data as a digital word or an
analog value. While digital computation is
accurate and fast, digital circuits do not
have as high a degree of functionality per
device as analog circuits. Therefore, ana-
log circuits should allow much denser com-
puting networks. This is particularly im-
portant when integrating computational
circuitry and photosensors, which will help
alleviate the I/O bottleneck of transferring
data between components. However, ana-
log circuits are limited in accuracy and are
difficult to characterize and design. Spe-
cific VLSI implementations must there-
fore trade some computational flexibility
for faster performance and a higher degree
of integration.

When implementing algorithms in inte-
grated circuits, it is not clear what level of
parallelism is needed. While biology uses
three dimensions to construct highly
interconnected networks, VLSI is limited
to 2.5 dimensions, making such networks

difficult and costly to implement. How-
ever, integrated circuits are approximately
four orders of magnitude faster than the
electrochemical components of biology.
This suggests that pipelined processing or
other methods of time-sharing computing
power might be able to compensate for the
lower degree of connectivity. Clearly, a
VLSI vision system might not resemble
biological vision systems.

MIT researchers have fabricated an
analog chip (6.5x5.9 millimeters, made
with a 4-micron double-polysilicon, double-
metal charge-coupled-device process), which
integrates an analog signal processor with
a full fill-factor CCD imager. The device
computes edges faster than 1,000 frames
per second. This represents an example for
more complex chips performing algorithms
such as motion detection, for which pre-
liminary design concepts already exist.

Machine-independent global image-
processing operations. Apply has shown
us that it is possible to treat local image-
processing operations from a machine-
independent point of view. Using this ap-
proach, we can

« implement the same program efficiently
on various machines simply by recompiling,

« write programs with less effort, even
as compared with sequential code,

« create software for new machines with
little effort,

« explore models of parallelism, and -

« more easily test, develop, and compare
parallel computers.

A topic of current research is to extend
this approach to global image-processing
operations, such as histograms, Hough trans-
forms, connected components, and image
warping. Research at Carnegie Mellon has
led to two significant developments. The
first is the reversible-operations theorem:
Any operation that can be computed for-
ward or backward on a data structure can
be computed in parallel using a simple
split-and-merge model, in which the data
is partitioned among processors, processed
separately, and then combined with amerg-
ing function. The split-and-merge pro-
gramming model is applicable to a wide
range of image-processing algorithms and
includes any reversible operation. Only
error-diffusion halftoning and some types
of region-merging algorithms are not
reversible.
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The second result is a programming lan-
guage called Adapt, which implements the
split-and-merge algorithm. In Adapt the
programmer describes the function to be
applied locally at each pixel, using se-
quential semantics; results from a previ-
ous pixel can be reused. The programmer
also supplies a function that initializes
the state at the beginning of a row. These
two functions are then applied at differ-
ent processors to produce results for dif-
ferent regions of the image, and the results
are combined with a third function also
written by the programmer. The program-
mer can also supply a “last” function thatis
executed once at the end of all other pro-
cessing to clean up results and discard
intermediate variables. For example, in a
histogram, the function local to a pixel
increments a particular histogram element,
and the function applied at the beginning
of a row zeroes the histogram. The com-
bining function adds the histograms to-
gether, and, the last function divides each
element of the histogram by the total num-
ber of histogram elements to compute a
frequency table.

Adapt has been implemented for Unix/
C, Warp, I-Warp, the Ektron Image-Boss,
and Nectar, a crossbar-connected network
computer developed at Carnegie Mellon.
Several different programs for global
image processing have been developed;
some of these, including connected com-
ponents and image halftoning, exhibit
better speed or higher quality results than
previous algorithms.

An integrated programming model
for the IUA. With an architecture as com-
plex as the IUA, one of the first questions
that comes to mind is how to program it.
Currently it is programmed in a different
dialect of C at each level, and programs at
the different levels interact through vari-
ous simple protocols. As larger systems
are developed that cross levels more fre-
quently, a programming model must be
provided that integrates all three levels.

One area currently under exploration is
extending Common Lisp with both data-
parallel and control-parallel constructs. This
would most likely be built on the existing
Parallel Implementation of Common Lisp
compiler, developed at the University of
Massachusetts. PICL currently provides
futures-based control parallelism at four
granularities: node, process, task, and

thread. Extending this with data-parallel
constructs would let users program the
entire JTUA using a single language and
environment.

COLLABORATION BETWEEN
the DARPA Strategic Computing architec-
ture and vision communities has resulted in
new parallel hardware, software tools, al-
gorithms, and metrics, which have in turn
led to a better understanding of both the
computational requirements and potential
sources of parallelism in vision. Perhaps
even more significant, parallel processing
has changed the way vision researchers
work and has led to wholly new avenues of
exploration.

Before parallel processors were avail-
able, experiments often took days to exe-
cute and the number of trials of an algo-
rithm was necessarily limited. Using parallel
processors, vision researchers can conduct
an empirical study much more quickly and
thoroughly. New approaches, such as ac-
tive vision, become feasible. When these
new approaches are analyzed, they lead to
new sets of requirements for parallel archi-
tectures, and the cycle repeats. Of course,
the priming of just such a cycle is what
Strategic Computing was all about.
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Glossary

Blackboard: A globally accessible data struc-
ture on which hypotheses and evidence canbe
posted for use by multiple processing agents,
called knowledge sources.

Convolution: A basic image-processing oper-
ation. The convolution of two functions fand
g is a function h of a displacement y, as
defined by the following:

h(y)=fxg=[_flxgly=xdx

This can be thought of as sweeping a func-
tion in one dimension past the other function
in the other dimension. In practice, discrete
versions of the convolution function are im-
plemented.

Digitizer: A device for taking the analog signal
output by an imaging sensor and converting
it into an array of values that can be pro-
cessed by a digital computer.

Disparity: The displacement of points or fea-
tures between two images of a scene, ob-
tained from different viewpoints. The two
viewpoints may correspond to a stereoscopic
view or to points along the trajectory of a
moving sensor.

Distance doubling: A parallel-processing prim-
itive in which messages are transmitted re-
peatedly, but over distances that increase by
successive powers of two. Thus, a message is
first passed to an adjacent processor, which
returns the address of its neighbor. A mes-
sage can then be sent directly to that proces-
sor, which is a distance of two away. After
that processor returns the address of its two-
away neighbor, a message can be sent direct-
ly to a four-away processor, and so on.

Foveal-peripheral processing: Processing that
emulates the combination of foveal and pe-
ripheral vision found in the human eye. Typ-
ically uses a pair of sensors, one with a wide-
angle lens to provide low-resolution coverage
of a large area, and another with a telephoto
lens to give a high-resolution view of a small
area. Specialized sensors can also be used to
achieve this effect.

Frame buffer: A device for storing one or more
digitized images, often for I/O with a parallel
processor. Sometimes also used to store in-
termediate processing results.

Futures: A multiple-input multiple-data paral-
lel-processing primitive in which an opera-
tion (usually a function call) is initiated, but
its results are not needed until they are actu-
ally used in a later computation. Thus, the
initiating instruction stream can proceed in
parallel with the spawned operation until the
results are needed.

Gaussian: A mask that, when convolved with
an image, has the effect of smoothing the
image, thereby reducing certain types of noise.
The discrete form of the convolution com-
putes a weighted average of each pixel with
those surrounding it, out to some radius. The
weights correspond to the Gaussian distribu-
tion function e~*" . Thus, the weights dimin-
ish with the distance away from any given
pixel under consideration.

Hough transform: An operator that can be used
to detect lines in an image. Each member of a
subset of the pixels in an image (chosen by
some criteria) votes for all lines that might pass
through it. The votes are accumulated in a two-
dimensional histogram array, indexed by an-
gle and distance from the origin. Peaks in the
histogram correspond to lines that were “voted
for” by many pixels. The Hough transform has
the advantage that it can detect lines made up of
fragments that are widely separated in an im-
age. The transform can also be generalized for
detecting similarities in other types of fea-
tures.

Hypercube: An n-dimensional cube. Typically
refers to a graph of communication links in a
parallel processor. The corners of the hyper-
cube are occupied by processors, and the edges
are communication links between the proces-
SOTS.

Image pyramid: A set of images at successively
coarser resolutions. The input image is at the
base of the pyramid and each level above is
typically a factor of four smaller. Also refers to
parallel-processing architectures with a simi-
lar organization. An image pyramid is often
the basis for multiresolution processing.

Isotropic texture: A texture whose properties
are independent of orientation.

K-curvature: A technique for measuring
curvature along a line. For each point on
the line, find the two neighboring points on the
line that are a distance K away. The
angle formed by the three points is then com-
puted as an approximate measure of local cur-
vature.

Laplacian: A convolution for extracting edges
from an image. It is a discrete approximation to
the Laplacian differential operator

rr P
ox>  dy?

where the image is cast as a continuous func-

tion f.

Markov random field: A Markov random pro-
cess is one whose next state in time is arandom
function of its current state, and independent of
previous states. A Markov random field is a
generalization of this conceptto a spatial field,
such that the next state of an element in the
field depends on the current state of itself and
its neighbors.

Massively parallel: A parallel processor with
more than 1,064 processing elements.

Multiple-instruction multiple-data: Multiple in-
struction stream multiple data stream parallel-
ism is one of the classes in the widely recog-
nized processor taxonomy defined by Michael
Flynn. A processor of this type has multiple
instruction fetch and execution units. It is usu-
ally composed of multiple standard uniproces-
sors linked by a communication mechanism.

Multiresolution: Processing that takes place at
multiple scales of image resolution. For exam-
ple, it might be easier to detect large features in
an image using a coarser version of the data,
and then use this information to guide refine-
ment of feature detection at successively higher
resolutions.

Optical flow: In successive images taken from a
moving sensor, features appear to flow away

from the point toward which the sensor is
moving (called the focus of expansion). This
effect is known as optical flow. The field of
vectors representing the apparent motions of
points in the image sequence is called the
optical-flow field.

Pipelined parallel: A form of parallelism in
which multiple computational elements are
configured into stages. Data enter the ele-
ments in a given stage, are processed, and the
results are passed on to the elements in the
next stage. For example, an image might be
passed through a pipeline consisting of sev-
eral convolution processors and a classifica-
tion processor.

Scan computation: A single-instruction multi-
ple-data parallel-processing primitive in
which an operation is applied so that it ap-
pears that a set of processors have been
operated on in a sequential (scan) ordering.
For example, enumerating a set of processors
would appear to be a sequential task (each
processor must learn the number of
the processor preceding it). In a processor
such as the Connection Machine, however,
such operations can be performed in loga-
rithmic time.

Shape-from-X: Refers to a wide range of meth-
ods for extracting surface information from
image data. For example, shape-from-shad-
ing, shape-from-texture, etc.

Single-instruction multiple-data: Single in-
struction stream multiple data stream paral-
lelism is one of the classes in the processor
taxonomy defined by Michael Flynn. Such a
processor has a single instruction fetch unit
that broadcasts eachinstruction to an array of
processing elements. These elements typi-
cally consist of an arithmetic logic unit, local
data memory, and an interprocessor commu-
nication mechanism.

Single-program multiple-data: A variation of
the MIMD mode of parallelismin which, like
SIMD processing, each processor executes
the same program. However, each processor
may branch independently within the code.

Sobel: A convolution operator whose results are
the image gradient in the x and y directions.

Spectral albedo: The albedo is the ratio of
reflected light to incident light. Spectral albe-
do is the albedo measured within a specified
set of wavelength bands in the visual (or near-
visual) spectrum. In vision, this often refers
to the albedo measured in the primary color
bands (red, green, and blue).

Spline: As used here, short for B-Spline; a
piecewise polynomial curve that is related to
a guiding polygon, defined by a set of points
in a plane.

Systolic processing: A form of parallelism in
which multiple processors are chained to-
gether such that the results of one proces-
sor‘s computations are passed to the next
processor in the (typically linear) chain. Sim-
ilar to pipelined parallelism, except that the
processors are usually general-purpose pro-
grammable devices.

Texel: A texture element. A primitive compo-
nent of a texture that is independent of posi-
tion, size, and orientation.
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