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One major difficulty with this approach is that it is based on
a verbal description of image features rather than on the raw
intensity values in the image itself. This makes it difficult to test
under more general conditions. In order to apply this analysis
to a more general class of images, it would first be necessary to
construct operators that extract the feature descriptions being
invoked-—a task that has yet to be accomplished. Before embark-
ing on such a difficult approach it is worth asking whether
simpler extracted properties, such as those derivable from linear
filters, will suffice (see refs 4-7).

When inspecting this texture one may observe that the Xs
look smalier than the Ls, and that they break up the background
differently. This suggests that very simple size-tuned mechan-
isms, such as cells with centre-surround receptive fields, could
play an important role in the discrimination. We changed the
relative sizes of the Xs and the Ls to see whether we could
increase and decrease the discriminability of the patterns.

Figure 1b shows the result of lengthening the bars of the Ls
by 25%. The bar intensities have been compensated so that the
overall density of the micropatterns (that is, the equivalent
amount of ink in each) is unchanged. The discrimination
becomes easier. Thus, although the micropatterns still have the
same number of terminators, corners, and so on, the manipula-
tion of size has a significant impact on the discriminability of
the texture.

Figure 1¢ shows the result of making the bars of the Ls 25%
shorter than in the original textures, again with compensation
in the intensity of the bars. Now the discrimination is more
difficult.

Figure 1d-f shows the response of perhaps the simplest
size-tuned mechanism we can construct: a linear centre-
surround receptive field followed by full-wave rectification.
Figure 1d shows the response to the stimulus of Fig. la; the
mechanism responds more strongly to the patch in the centre.
Figure le shows the response to Fig. 1b; now the differences
are even more apparent. Figure 1f shows the response to Fig.
lc¢; in this case the size-tuned mechanism gives responses of
similar strength to the two textures.

For this particular set of textures, then, the discriminability
can be predicted fairly well from the activities of size-tuned
units, without reference to more feature-like properties of the
micropatterns. We suggest that the visual system uses a two-stage
cascade of local energy measures (similar to the cascade of
orientation measures discussed by Knuttson and Granlund®.)
In the first stage, linear filters are followed by a rectifying
nonlinearity (as in fig. 1d-f); spatial averaging provides primary
energy measures. These responses are then treated as image
arrays for input to a further layer of linear filters, which compute
secondary energy measures that indicate the locations of texture
boundaries.

Models for texture perception that are based on concepts
such as ‘terminators’ and ‘corners’ have been important in
motivating research in early vision, but the models have proven
difficult to formalize in such a way that they can be applied to
wide classes of textures. Although we do not present a full model
of texture perception here, the above demonstration indicates
that simple filtering processes operating directly on the image
intensities can sometimes have surprisingly good explanatory
power. The accompanying paper by Voorhees and Poggio®,
based on a computational investigation into texture analysis,
offers an example of a more fully elaborated theory and further
demonstrates the potential power of simple processes in early
vision.
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Computing texture boundaries
from images

Harry Voorhees™ & Tomaso Poggio

Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

Recent computational and psycholegical theories of human texture
vision'™> assert that texture discrimination is based on first-order
differences in geometric and luminance attributes of texture ele-
ments, called ‘textons™. Significant differences in the density,
orientation, size, or contrast of line segments or other small
features in an image have been shown to cause immediate percep-
tion of texture boundaries. However, the psychological theories,
which are based on the perception of synthetic images composed
of lines and symbols, neglect two important issues. First, how can
textons be computed from grey-level images of natural scenes?
And second, how, exactly, can texture boundaries be found? Our
analysis of these two issues has led to an algorithm that is fully
implemented and which successfully detects boundaries in natural
images®. We propose that blobs computed by a centre-surround
operator are useful as texture elements, and that a simple non-
parametric statistic can be used to compare local distributions of
blob attributes to locate texture boundaries. Although designed
for natural images, our computation agrees with some psycho-
physical findings, in particular, those of Adelson and Bergen
(described in the preceding article®), which cast doubt on the
hypothesis that line segment crossings or termination points are
textons.

How can texture elements be computed from images of natural
scenes? From the grey-level image our algorithm extracts
‘blobs’—small compact and elongated linear regions (also
known as ‘bars’) which are darker or lighter than their surround.
To detect relatively dark blobs, the algorithm works as follows.
First, the image is convolved with a centre-surround filter at a
fine scale (we typically use a laplacian of gaussian of standard
deviation 1.5 pixels). By using the logarithm of intensity, the
resulting blob regions are fairly insensitive to shadows or other
large-scale changes in illumination. Positive values of the filtered
image indicate regions which are relatively darker than their
surround. Hence, blobs can be regarded as the duals of intensity
edges, which are often computed as the zero crossings of the
filtered image. To remove some spurious connections between
blob regions, the filtered image is thresholded about a small
positive value. The threshold is proportional to an estimate of
noise in the image, which is automatically computed from a
histogram of the intensity gradient magnitude®.

This computation yields a map of dark blob pixels. Using
morphological operations, these areas are segmented on the
basis of local shape into small compact and thin elongated
components. For each of these blobs, five attributes are com-
puted—contrast, orientation, width, length, area and area
density. Finally, spurious or noisy blobs are removed by requir-
ing that the intensity gradient at most points along a blob’s
perimeter are above a noise threshold and pointing outwards.

We have found that in natural images, the computed blobs
and bars capture physically meaningful information about the
surface—small impressions and markings—and that attributes
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Fig. 1 a, Image of a leopard (from Time; 23 February 1987, page
40). b, The computed textons (blobs and bars). ¢, Texture bound-
aries due to density as found by our algorithm.

of these blobs characterize the texture. The algorithm, therefore,
provides a method of computing discrete ‘textons’ from natural
images in the spirit of Marr’s raw primal sketch’. Figures 1 and
2 show the result of applying our algorithm to natural images
of textured surfaces.

Once blobs are computed, how can their attributes be com-
pared to locate texture boundaries? Specifically, what statistic
is used to compare two distributions of attributes from nearby
neighbourhoods? We define a non-parametric statistic which
reliably predicts under which circumstances a texture boundary
will be perceived between two regions.

Mimicking the inability of humans to immediately discrimi-
nate small changes in attribute values, we use histograms rather
than the exact sample distributions themselves. The histogram
bucket size equals the minimum difference which is immediately
discriminable (for example, 15° for orientation). From the stand-
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point of detecting physical boundaries, implementing this ‘weak-
ness’ makes sense: if we did not ignore small differences in
attribute values, a graded texture gradient, perhaps formed by
the projection of a curved surface, would yield undesirably
significant texture boundaries across its face. Discretizing the
distribution (with overlapping buckets) avoids this problem.

To compare two sample attribute distributions, we compute
the maximum difference between corresponding histogram
buckets. This maximum frequency difference (MFD) statistic is
better suited than most standard statistics for this purpose,
because it is less sensitive to outliers, which are common in
natural images. The statistic also agrees with several human
discrimination capabilities. For example, a region of randomly
oriented bars is readily distinguished from a region of equally
oriented bars, and the two distributions yield a high MFD.
Conversely, we were surprised to discover that a region of bars
randomly oriented between 0 and 90° is hard to discriminate
from a region of bars randomly oriented between 90 and 180°.
Any standard statistical test would regard these distributions as
very significantly different. The MFD, however, is small, again
in accord with perception®.

A ubiquitous problem in texture discrimination is the choice
of neighbourhood size. It has been said that large neighbour-
hoods are needed to robustly represent texton distributions in
the presence of noise and outliers, but that small neighbourhoods
are needed to localize or even to avoid missing certain texture
boundaries. Our statistic seems to offer a way out of this
dilemma. Because it is quite insensitive to outliers, small distri-
butions (of about ten samples) often suffice to compute reliable
difference measures. Such neighbourhoods are small enough to
detect boundaries between regions which are as narrow as two
or three textons across. In our implementation, the neighbour-
hood diameter is between 5 and 10 times the average blob width.
These figures are based on some psychophysical results of
Julesz’, and are designed so that any neighbourhood of textons
dense enough to be perceived as a texture is of sufficient size.

When applied to the synthetic images tested by Bergen and
Adelson® in the previous article, our computation provides an
alternative to the conjecture’ that crossings are textons (see Fig.
3). In the left image, originally offered as evidence of crossings
as textons, the crosses give smaller blobs of higher contrast than
do the Ls (Fig. 3b). This demonstrates that blob attributes offer
an alternative to crossings as an explanation of human texture
discrimination.

In the right image, where the size of the Ls and the intensity
of crosses are decreased, the computed blobs from each region
are similar. Bergen and Adelson® reported in this case that
discrimination is harder. It therefore appears that simple blob
attributes offer not only an alternative, but a more accurate
explanation of human discrimination capabilities. At the very
least, the psychophysical results demonstrate that such spatial
filtering cannot be neglected in a satisfactory explanation of
human texture perception. Recent psychophysical experiments®
also support this view.

We go on to illustrate how our algorithm computes texture
boundaries in this example. Figure 3¢ shows histograms of blob
contrast values from neighbourhoods in different regions in each
of the two images, together with the computed MFD statistic.
Figure 3d shows the MFD computed at a grid of points across
each image array. Significantly high and long ridges in each
array identify blob contrast boundaries, as shown in the left
image of Fig. 3e. In the right image, no significant boundaries
are detected. Similar results are obtained on this example using
blob width as an attribute instead of blob contrast.

The boundaries computed by our algorithm are consistent
with pre-attentive texture perception, without the need for cross-
ings as textons. From the standpoint of analysing natural images,
this result is not surprising. Seldom would a natural scene give
texture elements shaped like characters, each having a distinct
number of crossings or terminators. Although we have not

© 1988 Nature Publishing Group



Fig. 2 a, Natural image of clothing.
b, The computed textons (blobs and
bars). ¢, Texture boundaries found by
our algorithm. Boundaries due to
differences blob width are shown in
white with boundaries due to differen-
ces in blob contrast shown in grey. The
algorithm has been applied to several
other examples of natural texture®.
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Fig. 3 Demonstration that crossings are not textons. a, (Left) Demonstration offered as evidence that crossings are textons. (Right) Bergen
and Adelson’s example® where discrimination is decreased. b, Blobs obtained by VG filtering, shown here with intensity proportional to blob
contrast. At left, the crosses give smaller blobs of higher contrast than do the Ls. The gaussian filter, G, has standard deviation 2.5 pixels,
and the image size is 256 pixels square. ¢, Superimposed histograms of blob contrast from adjacent neighbourhoods shown in b, with maximum
frequency difference (MFD) statistic. In our implementation, the histograms are smoothed slightly to reduce the effect of discretization. d,
MFD of contrast, computed from adjacent neighbourhoods over each entire array. e, Significantly high and long ridges of d identify contrast
boundaries. Contrast accounts for the discrimination of the left image, without the explicit computation of crossings. No boundaries are
detected in the right image, which humans also find harder to discriminate according to Bergen and Adelson (see preceding article®).

proven that blobs are textons any more than Julesz and Bergen’
proved that crossings are textons, we believe that our explanation
is preferable, because the computation works for natural images
as well as for synthetic ones. Also, in natural images, blob
attributes provide information about the physical cause of a
texture boundary. Changes only in blob orientation, for
example, suggest the presence of a surface orientation discon-
tinuity, while large changes in size or density can only be due
to occlusion or to a change in material®.

Our experience with natural images suggests that most texture
boundaries are probably due to differences in texton density.
At a particular scale of analysis, two surfaces adjacent in the

image are unlikely to give textons at the same scale of analysis
(as in Fig. 1). Tt is possible that texture boundaries due only to
changes in texton orientation or size (as in Fig. 2) are less
common in images of natural scenes than synthetic, psycho-
physical images would lead us to believe.

We suspect that terminators may not be textons either. We
have already shown how the discrimination of Fig. 3, which
contains terminator density ratio of 4:2, can be explained by
blob attributes. We also found, using images of squarish ran-
domly oriented 6s and E's (similar to those of Fig. 6 of Julesz®*),
that even a terminator density ratio of 3:1 is not sufficient for
discrimination. Breaks in lines (pairs of terminators) seem more

© 1988 Nature Publishing Group
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salient than ends of lines, and may be more relevant to natural
textures (see ref. 5, Fig. 6.5). Breaks in dark lines may be
computed as small-scale light blobs.

Our computation leaves many questions unanswered. We have
not dealt with multiple scales of blob detection or the integration
of various attribute boundaries. Nevertheless, we believe that
we have extended perceptually based theories of texture vision
to natural images by implementing an algorithm which computes
textons, and which compares textons to locate texture bound-
aries, in accordance with human texture capabilities. We have
successfully applied the algorithm to natural images, and have
shewn how it accounts for previous psychophysical results as
well. Our algorithm demonstrates the feasibility of a first-order,
symbolic approach to texture discrimination in the spirit of
Marr’s primal sketch! and Julesz’s texton theory®. It is possible
that our statistical test applied to the outputs of a sufficient
number of arrays of linear filters would also provide acceptable
texture segmentation. Such a scheme, similar to Bergen and
Adelson’s suggestion®, remains to be elaborated, implemented
and tested. It is possible that the main steps of the algorithm
could be implemented in a relatively natural way by known
neural structures in the retina and the visual cortex.

The authors thank Fero Simoncelli and Mike Sokolov for
their help in producing the images.
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A cellular analogue of visual
cortical plasticity

Yves Frégnac, Daniel Shulz, Simon Thorpe*
& Elie Bienenstock

Laboratoire de Neurobiologie et Neuropharmacologie du
Développement, Batiment 440, Université Paris XI, F-91405,
Orsay Cedex France

Neuronal activity plays an important role in the development of
the visual pathway. The modulation of synaptic transmission by
temporal correlation hetween pre- and postsynaptic activity is one
mechanism which could underly visual cortical plasticity’™. We
report here that functional changes in single neurons of area 17,
analogous to these known to take place during epigenesis of visual
cortex>*, can be induced experimentally during the time of record-
ing. This was done by a differential pairing procedure, during
which iontophoresis was used to artificially increase the visual
response for a given stimulus, and to decrease (or block) the
response for a second stimulus which differed in ocularity .or
orientation. Long-term modifications in ocular dominance and
orientation selectivity were produced in 33% and 43% of recorded
cells respectively. Neuronal selectivity was nearly always displaced
towards the stimulus paired with the reinforced visual response.
The largest changes were obtained at the peak of the critical period
in normally reared and visually deprived kittens, but changes were
also observed in adults. Our findings support the role of temporal
correlation between pre- and postsynaptic activity in the induction
of long-lasting modifications of synaptic transmission during
development, and in associative learning.

* Present address: Institut des Neurosciences, University Paris VI, F-75230, Paris, France.
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Fig. 1 Imposed temporal correlation between visual afferent
activity and postsynaptic firing induced iontophoretically. a, For
each cell, the shape of the action potential (calibration bars, 1 mV
and 1 ms) was continuously monitored on a digital scope to ensure
that the same neuron was recorded throughout the experiment. b,
Each indentation indicates the temporal occurrence of a:single
visual stimulation, and each filled rectangle that of an iontophoretic
pulse of a given polarity (shown at right). During control (C, upper
row), two stimuli (S* and S™) were presented by blocks of four
trials in succession (upper line), without iontophoretic current
(lower line). During pseudo-pairing (PP, middle row), ion-
tophoretic pulses were uncorrelated with visual stimulation. During
pairing (P, lower row) iontophoretic pulses were concomitant with
the visual response, in such a way as to impose a significant increase
(8*) or decrease (S7) of the visual response. Cases where no
modulation of activity could be produced by iontophoresis are
noted S° (see right eye stimulation in Fig. 2). The two test stimuli
differed in either ocular dominance (P,), or orientation (P,,). The
relative preference response between the two test stimuli, given by
the normalized ratio of visual responses S'/(S*+S7), was
measured during control periods in which the sequence of stimula-
tion shown in row C was repeated 10-50 times. The two series of
values taken from this ratio before and after pairing (or pseudo-
pairing) were compared using both parametric (unpaired Student’s
t-test; significance level of P <0.005) and non-parametric tests
(Kolmogorov-Smirnov [K.S.]; significance level of P <0.05). To
assess non-associative effects, pseudo-pairing procedures (PP)
were interposed between controls prior to pairing in some experi-
ments. In the case of the orientation protocol (P, ), the full orienta-
tion tuning curves were analysed before and after pairing, to reveal
possible generalization effects for stimuli other than those used
during pairing.

Methods. In addition to standard anaesthesia and electrophysio-
logical procedures detailed elsewhere'®, we used a simple method
to artificially control the level of postsynaptic activity by varying
the retention/ejection current of the 1-3 M potassium acetate or
chloride extracellular recording electrode (2-20 M{}). Positive cur-
rent (average value of +4nA) and increase in the concentration
of potassium in the extracellular medium resulted (in 79% of the
cases) in a significant increase in spontaneous and/or evoked
activity. Negative current (average value of —9 nA) reduced the
cells’ activity through a field effect'” (in 76% of the cases) which
sometimes led to a total blockade of the response for the preferred

stimulus (in 16% of visual cells).
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