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Abstract

According to the 1.5 views theorem (Ullman and Basri, 1991; Poggio, 1990)
recognition of a specific 3D object (defined in terms of pointwise features) from
a novel 2D view can be achieved from at least two 2D model views (for each ob-
ject, for orthographic projection). In this note we discuss how recognition can
be achieved from a single 2D model view by exploiting prior knowledge of an
object’s symmetry. We prove that for any bilaterally symmetric 3D object one
non-accidental 2D model view is sufficient for recognition since it can be used to
generate additional “virtual” views. We also prove that for bilaterally symmetric
objects the correspondence of four points between two views determines the cor-
respondence of all other points. Symmetries of higher order allow the recovery of
Euclidean structure from a single 2D view.!

1 Introduction

Image-based techniques for object recognition have recently been developed to recog-
nize a specific three-dimensional object after a “learning” stage, in which a few two-
dimensional views of the object are used as training examples (Poggio and Edelman,
1990; Edelman and Poggio, 1992). A theoretical lower bound on the number of views
is provided by the 1.5-views theorem (Poggio, 1990; Ullman and Basri, 1991; for more
details see section 2.1 in this paper). In the orthographic case, this theorem implies
that two views — defined in terms of pointwise features — are sufficient for recognition or
equivalent to define the affine structure of an object (see also Koenderink and van Doorn,
1991). It is known that in the case of perspective projection, two views are sufficient to
compute projective invariants specific to the object (Faugeras, 1992; Hartley et al.1992
and Shashua, 1993). Under more general conditions (more general definition of “view”,
non-uniform transformations etc.) and, depending on the implementation, many more
views may be required (Poggio and Edelman’s estimate is on the order of 100 for the
whole viewing sphere using their approximation network).

Though this is an easily-satisfied requirement in many cases, there are situations in
which only one 2D view is available as a model. As an example, consider the problem
of recognizing a face from just one view: humans can do it, even for different facial
expressions (of course an almost-frontal view may not be sufficient for recognizing a

LPart of this paper has appeared as MIT AI Lab. Memo No. 1347.



profile view and in fact the praxis of person-identification requires usually a frontal and
a side view).

Clearly one single view of a generic 3D object (if shading is neglected) does not
contain sufficient 3D information. If, however, the object belongs to a class of similar
objects, it seems possible to infer appropriate transformations for the class and use them
to generate other views of the specific object from just one 2D view of it. We certainly
are able to recognize faces which are slightly rotated from just one quasi-frontal view,
presumably because we exploit our extensive knowledge of the typical 3D structure of
faces.

One can pose the following problem: is it possible from one 2D view of a 3D object
to generate other views of that object, exploiting knowledge of the legal transformations
associated with objects of the same class? (We call a 2D transformation of a 2D view
legal if its result is identical to the projection onto the image-plane of a rigid rotation of
the unknown 3D object.) A positive answer would imply (for orthographic projection,
uniform affine transformations and in the absence of self-occlusions) that a novel 2D
view may be recognized from a single 2D model view, because of the 1.5-views theorem.

In this paper we consider the case in which legal transformations for a specific object
(i.e. transformations that generate new correct views from a given one) immediately
are available as a property of the class. In particular, we will discuss certain symmetry
properties.

The main results of the paper are two.

1. We prove that, for any bilaterally symmetric 3D object (such as a face), one 2D
model view is sufficient for recognition of a novel 2D view (for orthographic projec-
tion and uniform affine transformations). This result is equivalent to the following
statement: for bilaterally symmetric objects, a model-based recognition invariant
(as defined by Weinshall, 1993) can be learned from just one model 2D view. It is
also closely related to the projective invariant computed on symmetric objects by
Rothwell et al. 1993.

2. We also prove that for symmetries of higher order (such as two-fold symmetries,
i.e., bilateral symmetry with respect to two symmetry planes) it is possible to
recover Euclidean structure from one 2D view (see also Kontsevich, 1993 ).

In the final section, we briefly mention some of the implications of our results for the
practical recognition of bilaterally-symmetric objects, for human perception of 3D struc-
ture from single views of geometric objects and, more generally, for the role of symmetry
detection in human vision.

2 Results

2.1 Recognition from One 2D Model View

2.1.1 Generating ’virtual’ views

Suppose that we have a single 2D model view of a 3D object, which is defined in terms of
pointwise features. A 2D view can be represented by a vector X = (Z1, Y1, L2, Y2------Tn, Yn ),



that is by the z, y-coordinates of its n feature points. Assume further that (a) we know
a priori that the object is bilaterally symmetric (for instance, because we identify the
class to which it belongs and we know that this class has the property of bilateral sym-
metry) and (b) we find in the 2D view the correspondence of the symmetric pairs of
points. It can be shown that for views of bilaterally symmetric objects there exist 2D
transformations D on a pair p of symmetric points of the object that yield a legal view
p* of the pair. This new view is the projection of a rigid rotation of the unknown 3D
object onto the image-plane

Dppair = p;az'r' (1)
Under the transformations D, Dy, and Dj
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Each of these transformations applied to all symmetric pairs of points of an image,
leads to a new ’wirtual’ view of the object under orthographic projection. In the case of
perspective projection, only D; is a legal transformation. Notice that symmetric pairs
are the elementary features in this situation and points lying on the symmetry plane are
degenerate cases of symmetric pairs.

Geometrically, this analysis means that, for bilaterally symmetric objects, simple
transformations of a given 2D view yield other 2D views that are legal. It is remarkable
that, in order to apply these 2D transformations to a view, it is not necessary to know
the spatial orientation of the object or even its 3D structure but only that it is bilaterally
symmetric and the symmetric pairs of features. Each transformation corresponds to a
proper rotation of a rigid 3D object followed by its orthographic projection on the image
plane as shown for the transformation D; in Figure 1 top. The transformations are
different from a 2D reflection at an axis in the image plane.

In the following, we demonstrate how these 'virtual’ views contain additional infor-
mation, which can be used in object recognition. Let us first point out the difference
between recognizing an object and computing its Euclidean 3D structure, which is much
harder. We say that an object is recognized if its 2D view is an element of the linear
vector space Vfbiv , the space of all possible views of a known model object, obtained by
3D linear affine transformations of the 3D model followed by orthographic projection.
This definition is equivalent to the affine structure used in Koenderink and van Doorn,
1991.

In the case of orthographic projection, we will show that for a bilateral symmetric ob-
ject a single 2D view (and its 'virtual’ view) are sufficient for recognition. Ullman and
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Figure 1: Given a single 2D view (upper left), a new view (upper right) is generated
under the assumption of bilateral symmetry. The two views are sufficient to verify that
a novel view (second row) corresponds to the same object as the first. (The labels are
only used to visualize the applied transformation Dy between upper left and upper right,
for definition see text.)

Basri (1991) showed that the linear vector space V3" of all possible 2D views of an
object with N feature points has 6 dimensions. Their proof is equivalent to saying that
V(fb]lv consists of vectors with x and y coordinates and can be written as the direct sum
Vil =V,Y @ VN, where VY and V" are non-intersecting linear subspaces, each isomor-
phic to 3. This implies that the z coordinates of a 2D view are the linear combination
of the z coordinates of 3 2D views and the y coordinates are the linear combination of
the y coordinates of 3 2D views, the two combinations, however, being independent of
each other. The 1.5 views theorem (Poggio 1990) proves that VN = VyN and therefore
any 4 vectors from V. and VyN are linearly dependent. So in general 2 views are suffi-
cient to span V(fbfv by taking two vectors of the z and y coordinates of a first view and a
third vector of the x or y coordinates of a second view. Consider now the 2D view of a
bilateral symmetric object, which we assume consists of at least 4 non colinear feature
points. It is easily seen that in general the vectors formed by py = (zr,Yr, 25, yr) and
p = (—%r,Yr, —Tr,yr) are linearly independent. Ounly for “accidental” views, like the
perfectly “frontal” view or the perfect “side” view, the vectors of the x and y components
are linearly dependent.

2.1.2 A Recognition Algorithm

A single 2D model view together with the knowledge that the object is bilaterally sym-
metric can be used for recognition in the following way.



1. Take x; and y; (the vectors of the z and y coordinates of the n feature points)
from the available view and generate a third vector x, (or y3) by applying the
symmetry transformation D; to all pairs of symmetric points.

2. Make a 2n x 6 matrix B with its 6 columns representing a basis for V3 = VV@V,".
An explicit form of B is

B_(X1 X y1 0 O O)
o 0 0 0 X1 X2 Vi1

3. Check that B is full rank (for instance (BTB)_1 exists). This is equivalent to
testing for “accidental” views.

4. A novel view t (we assume here that the first n components are the x coordinates
followed by n y coordinates) of the same object must be in the space spanned by
the columns of B, and therefore must satisfy

t = Ba
which implies (since (BTB)~" exists)
t = B(B"B)” Bt (2)

B can then be used to check whether t is a view of the correct object or not, by
checking if ||t — B(BTB) 'B”t|| = 0 (an additional test for rigidity may also be
applied, if desired, to the three available views). Figure 1 shows the results of using
this technique to recognize simple pipe-cleaner animals.

Notice that bilateral symmetry provides from one 2D view a total of four 2D views
(image plane rotations not included), each corresponding to a different rotation of
the original 3D object. Two of the four views are linearly independent (two linearly-
independent vectors of the = coordinates and two for the y coordinates). The results
of Shashua (1993) in combination with the virtual views prove even in the perspective
case the existence of an projective invariant for bilateral symmetric objects. For recogni-
tion functions and projective invariants of symmetric objects see also Moses and Ullman
(1991) and Rothwell et al. (1993).

2.2 Correspondence and Bilateral Symmetry

Let us suppose that the correspondence of four non coplanar points (or more) between a
model view (with the pairs of symmetric feature-points already identified ) and a novel
view is given. Then the following epipolar line argument can be applied separately to
each of the two views generated by the model view under the assumption of bilateral
symmetry (see equation 1). The z,y coordinates of corresponding points in two images
of an object undergoing an affine transformation are linearly dependent, that is

X1 + f1y1 + aoxg + Boys = 0.



For each point (x1, %) in the model view the corresponding point (x,y) in the novel view
then satisfies the two equations:

y=mzr+ A and y=m'z+ A

with m = —ay/fBy and A = —(ayx1 + B1y1)/Pe and m', A’ determined by the virtual
view. Therefore (z,y) is uniquely determined (apart special cases) as

m' A — mA’ A -A

s X

y:

m —m m—m'

Thus, the correspondence of four non-coplanar points between two 2D views of a bilat-

eral symmetric object (undergoing a uniform affine transformation) uniquely determines
the correspondence of all other points.
In the case of occlusions, correspondence of singular points in the novel view can be
established as long as the pair of symmetric points is identified in the model view. When
full correspondence between the model and novel view is established, any structure from
motion algorithm can be used to compute the Euclidean structure related to the two
views and the assumption of symmetry.

2.3 Euclidean Structure from One 2D Model View

Suppose, as before, that we have a single 2D view of an object. Assume further that
we hypothesize (correctly) that the object is two-fold bilaterally symmetric and that
symmetric quadruples can be identified. These are the “elementary features in this
situation, since any point, that is not on both symmetry planes corresponds to three
other points. We define an object to be two-fold bilaterally symmetric if the following
transformations of any 2D view of a feature quadruple yield legal views of the quadruple,
that is orthographic projections of rigid rotations of the object:

D21qquadr = q;uadr (3)
D22qquadr = qguadr (4)
with
X1 —T2 Ty
T - T3
T3 —Ty4 )
Ty 1 —3 2 L1
Qguadr = Ui ’ qquadr = Yo and qquadr = —y
Y2 W —Y3
Y3 Ya —Y2
Ya Ys —Y1

These 3 views are independent apart from special views, such as accidental views (see
previous section). Thus the above definition of symmetry provides a way to generate two



Figure 2: A single 2D view (upper left) of a two-fold bilateral symmetric object can
generate additional views (upper center and right) using the symmetric properties of the
object. Those three views are sufficient to compute the 3D structure, as indicated in the
second row where we show a new projection of the 3D structure computed from the three
views above.

additional views from the given single view, unless qqyqqr is a view which is left invariant
by at least one of the symmetry transformations. This is the case, for instance, for
exactly frontal views. The same argument can be repeated for all symmetric quadruples.
These transformations are the same transformations from the previous section applied
to both symmetries.

Thus, these transformations yield in the generic case 3 independent views of the
object (the symmetry yields a total of 16 views, representing 16 different orientations of
the object, which span the 6-dimensional viewing space of the object). One can verify
that standard structure-from-motion techniques (Huang and Lee, 1989; see also Ullman,
1979) can be applied to conclude that structure is uniquely determined, except for a
reflection about the image plane. The matrix defined by Weinshall (1993) to compute
an object invariant is full rank in this case; it is, however, rank deficient for simple
bilateral symmetry. Using a different approach, the pairwise comparison technique of
Kontsevich (1993) comes to a similar result. The following holds:

Given a single 2D orthographic view of a two-fold bilateral symmetric object (with
at least two symmetric, nondegenerate quadruple features containing a total of at least
four non-coplanar points) the corresponding structure is uniquely determined up to a
reflection about the image plane.

In addition, the following results can be easily derived:

1. 3D structure can be obtained from two 2D views of a bilateral symmetric object
(see figure 2).



Figure 3: A single 2D view (upper row) of a bilateral symmetric object can be generated
by different bilateral symmetric 3D objects. The three objects projected in the second row
all generate the 2D view of the first row after a rotation of 20° around the vertical axis.

2. Structure cannot be uniquely obtained from a single 2D view of a bilateral sym-
metric object. So a single 2D view of a bilateral symmetric object can be generated
by different bilateral symmetric objects (see figure 3).

3 Discussion

Exploiting knowledge about the symmetry of an object, recognition is possible from a
single view. The geometric constraints of symmetry allow the generation of additional
legal views from the given one, using 2D image transformations. This can be done
for all non occluded pairs of symmetric points, without knowing the orientation of the
symmetry plane or the camera position. For bilaterally symmetric objects we proved
a single view is sufficient for recognition from a different view. For two-fold bilateral
symmetric objects the 3D structure can be computed from a single view. Here are some
implications of our results:

e Fzact frontal model views should be avoided

The results about bilateral symmetry imply that one should avoid using a model
view which is a fixed point of the symmetry transformations (since the transforma-
tion of it generates an identical new view). In the case of faces, this implies that the
model view in the data base should not be an exactly frontal view. Psychophysical
evidence supporting this point is given by Schyns and Biilthoff, (1994).

o A symmetry of order higher than bilateral allows recovery of structure from one 2D
view
Our results imply that even in absence of 3D cues (such as shading, perspective,

texture etc.), an object symmetry of sufficiently high order may provide structure
from a single view. An interesting conjecture is that human perception may be



biased to impose a symmetry assumption (in the absence of other evidence to the
contrary), in order to compute structure.

A new algorithm for computing structure from single views of polyedric objects

For line drawings, Marrill (1991), Sinha and Adelson (1993) proposed an iterative
algorithm that is capable of recovering structure from single views. Our result on
structure-from-1-view may explain some of these results in terms of the underlying
algebraic structure induced by symmetry properties. It also yields a new non-
iterative algorithm for the recovery of structure since it provides (once symmetric
n-tuples are identified) a simple algorithm generating a total of three linearly-
independent views to which any of the classical Structure-from-Motion algorithms
can be applied, including the recent linear algorithms (Huang and Lee, 1989). It
remains an open question to characterize the connection between the minimization
principle of Marrill-Sinha and our internal structure constraints. Especially in the
case of bilateral symmetric objects their principle might help to understand, which
constraints are used from human observers to disambiguate views as shown in
figure 3.

“Virtual” views and tmage based object recognition

For image-based recognition systems (Poggio and Edelman, 1990), the possibility
of generating additional views for objects minimizes the number of necessary ex-
ample views. In the case of symmetric objects, the image transformations related
to rotations in 3D space can be derived directly from the 3D structure of the class
of symmetric objects. In the case of nonlinear transformations, the related im-
age transformations have to be approximated from prototypical views of a class
of objects. The approach by Beymer et al.(1993) demonstrates how this can be
done for pose and expressions of human faces. Novel grey-level images, related to
changes of facial expression, can be generated from a single image when applying
the appropriate image transformation.

Psychophysical results on object recognition

It is intriguing to speculate about relations between the known human abilities
of detecting symmetries and the human tendencies of hypothesizing symmetry in
visual perception. There is evidence on spontaneous generalization to left-right
reversal in humans and even simpler visual systems (see Rock et al., 1989; Suther-
land, 1960; Young, 1964). Our theory offers a simple explanation of these effects
as a by-product of a mechanism optimized for the recognition of 3D objects. Thus,
visual recognition of 3D objects may be the main reason for the well known sensi-
tivity of visual systems to bilateral symmetry of 3D objects and 2D patterns.

The results found in psychophysical experiments on object recognition (Vetter et
al., 1994) are consistent with our theoretical predictions for symmetric objects.
Based on a single training view, the generalization performance for novel views
is significantly better for symmetric objects than for non-symmetric objects. In
contrast to the non-symmetric objects, the generalization field of symmetric objects
showed additional peaks of good recognition performance. These additional peaks
were in all cases at the location of the virtual views. It is not yet clear in what



way the visual system uses symmetry: instead of creating “explicit” virtual views
the system may discover and use symmetry-based features that are view invariant.

Several open questions remain. How does a visual system, natural or artificial, detect
symmetric pairs of features of a 3D object, a task which is in general quite different
from symmetry detection in a 2D pattern. What are the optimal cues leading to the
assumption of symmetry, since it is not possible to prove the symmetry when only a
single view is given? In some cases (e.g., line drawings of geometric objects), algorithms
capable of identifying feature points likely to be symmetric should be feasible, since all
pairs of symmetric points in one view obey to the same epipolar line constraint. In other
cases additional information may be available (e.g. once the two eyes are identified as
eyes, it is known that they represent a symmetric pair). There the knowledge about the
symmetry of the object class can help to establish the correspondence between symmetric
feature pairs. Another question which is open is how to extend our approach of using
2D image transformations to geometric constraints other than bilateral symmetry.
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