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Abstract—This paper shows that the motion field, the 2-D vector field
which is the perspective projection on the image plane of the 3-D ve-
locity field of a moving scene, and the optical flow, defined as the esti-
mate of the motion field which can be derived from first order variation
of the image brightness pattern, are in general different, unless special
conditions are satisfied. Therefore, dense optical flow is often ill-suited
for computing structure from motion and for reconstructing the 3-D
velocity field by means of algorithms which require a locally accurate
estimate of the motion field. A different use of the optical flow is sug-
gested. It is shown that the (smoothed) optical flow and the motion field
can be interpreted as vector fields tangent to flows of planar dynamical
systems. Stable qualitative properties of the motion field, which give
useful information about the 3-D velocity field and the 3-D structure
of the scene, can be usually obtained from the optical flow. The idea is
supported by results from the theory of structural stability of dynam-
ical systems.

Index Terms—Motion computation, optical flow.

1. INTRODUCTION

KEY task for many vision systems is to extract in-

formation from a sequence of images. This infor-
mation can be useful for solving important problems such
as recovering the 3-D velocity field, segmenting the im-
age into parts corresponding to different moving objects,
or reconstructing the 3-D structure of surfaces in the
viewed scene. The recovery of the motion field, which is
the perspective projection onto the image plane of the true
3-D velocity field of moving surfaces in space, is thought
to be an essential step in the solution of these problems.
The data available, however, are only the spatial and tem-
poral variations in the image brightness pattern E. From
these variations it is possible to derive an estimate of the
motion field, called optical flow [1]-[3]. The assumption
that the motion field and the optical flow coincide has
often been made, the intuitive rationale being that this is
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true when spatial variations in E correspond to physical
features on the visible 3-D surfaces [4]-[6]. Horn [7],
however, has pointed out examples in which this assump-
tion does not hold. Algorithms which deal with the recov-
ery of the motion field from dense optical flow data have
been proposed, with the more or less implicit assumption
that the two fields are the same [8]-[10].

In this paper we show that the optical flow and the mo-
tion field are in general different, unless special condi-
tions are satisfied. In particular, even the hypothesis of a
Lambertian reflectance function of the viewed surfaces is
not sufficient by itself to guarantee that the two vector
fields are the same. A rigorous derivation of this result is
provided. Indeed, where sharp changes in intensity over
time are due to physical events on the moving surface
(e.g., texture and surface markings), the estimates of the
component of the motion field along the direction of the
spatial gradient of the image brightness pattern—esti-
mates which can be obtained by means of first order de-
rivative of the image brightness pattern—are accurate.
These estimates, therefore, are unlikely to be useful for
methods which rely upon a very precise, local reconstruc-
tion of the motion field. One may then ask, what is the
optical flow for? In the final part of the paper it is sug-
gested that meaningful information about the 3-D velocity
field and the 3-D structure of the viewed scene can be
obtained from qualitative properties of the motion field.
At any fixed time, the motion field can be seen as the flow
associated with some dynamical system and useful motion
motion information can be retrieved from its qualitative
properties, e.g., from its singular points. A thorough
analysis of this approach—proposed first by [11]—is pre-
sented in [12]. Then, results from the theory of structural
stability of dynamical systems suggest that, if the motion
field and the optical flow are sufficiently similar, they also
have the same qualitative properties. Therefore, the qual-
itative properties of the optical flow might be very useful
in recovering motion information (see [13], for example).

The paper is organized as follows. Section II defines
the problem and considers in detail how image irradiance
can be related to scene radiance in the case of a scene
consisting on non-Lambertian surfaces. Section III de-
scribes the method used to show that the optical flow and
the motion field are almost always different. We consider
the Lambertian model of reflectance and a more realistic
model for arbitrary rigid motion of a generic smooth sur-
face. Section IV shows that at any given time the motion
field and the optical flow can be processed to become
smooth vector fields tangent to flows of dynamical sys-
tems. Results from the theory of structural stability of dy-
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namical systems, then, are used to suggest that qualita-
tive, stable properties of the motion field hold for smooth
optical flows, provided the two fields are sufficiently sim-
ilar. Finally, in Section V, possible biological connec-
tions are discussed. Details on the geometry of perspec-
tive projection and a brief review of the theory of planar
dynamical systems are summarized in the Appendixes.

II. PRELIMINARIES

In this section notations, definitions, and assumptions
which have been used throughout the paper are stated.
The motion field and the optical flow are defined and image
irradiance is related to scene radiance in the case of a scene
consisting of non-Lambertian surfaces.

A. Definitions

Let us define notations and summarize concepts which
will be useful in what follows. For more details on the
geometry of perspective projection see Appendix A. Let

o f o S

eyl @
be the equation which defines the perspective projection
of a generic point on the image plane, where ¥, = (x,,
¥, 0) is the position vector of the projected point, X is
the position vector of the point, n = (0, 0, 1) is the unit
vector normal to the image plane (projection plane), and
fis the focal length in a suitable systems of coordinates
(see Fig. 1). Notice that the origin O is on the image
plane, the focus of projection F is located at (0, 0, —f),
and fri + X is the vector pointing from F to the point.
The equation for X,, in the case of orthographic projec-
tion, can be derived simply by taking the limit of the right-
hand side of (2.1.1) for f = oo, which yields

X

» n)n.
The motion field #, can be obtained differentiating
(2.1.1) with respect to time. If 7 = dX /dt, then'

— f — — e dh Ud
Up=m v—(v-n)n
U1

_m[f - (% - 1) ﬁ]z. (2.1.2)

Notice that in (2.1.2) 7, is given in terms of X and v,
position and velocity of the moving points in the scene
respectively, which are not known. In what follows, X »
and 7, will be considered as 2-D vectors defined on the
image plane, since their third component vanishes iden-
tically.

Let E = E(x,, y,, t) be the image brightness pattern
that is, the intensity of light at the point (x,, y,) of the

Ayi] (2.1.1)

=% - (%

image plane at time ¢. If ﬁp is the gradient with respect to
the image plane coordinates, then
dE OJE o
= +

e B 1.
iy V,E - 7, (2.1.3)

't can be easily shown that the perspective projection of the 3-D veloc-
ity error ¥ is equal to the velocity ¥, of the projected point on the image
plane, since both vectors are defined in terms of infinitesimal.
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Fig. 1. The geometry of perspective projection.

where 9E /0t is the partial derivative with respect to the
time at the point (x,, y,) and dE /dt, also called total tem-
poral derivative, can be thought of as the temporal deriv-
ative along the trajectory of the point (x,, y,) onto the
image plane. Equation (2.1.3) can be rewritten as

dE OFE
— =+

2 5,E] u

where v, is the norm of ¥, , component of the motion
field ¥ along the direction of VE. Now if

dE
T (2.1.4)
and || \7,,E || # 0, then
7, =~ 6{5/(% Y”E . (2.1.5)
IVENIV,E|

Therefore, if (2.1.4) holds, the component of the motion
field along the direction of the gradient of the image
brightness 7, can be written in terms of derivatives of E
(which can be computed). Equation (2.1.5) can be inter-
preted as an instance of the well-known aperture problem
[21, [3], [14], [15] for the unknown ZJ’,,: that is, the infor-
mation available at each point of a sequence of frames is
only the component of the motion field along the direction

of \.7',,E. In order to compute the full 2-D optical flow,
some other constraints are needed: Horn and Schunck [3]
for example, look for the smoothest 2-D vector field
whose component along V , E coincides with the right-hand
side of (2.1.5). Examples for which (2.1.5) is not true are
well-known [3]. Consider, for instance, a rotating sphere
with no texture on it (i.e., with uniform albedo) under
arbitrary, fixed illumination. Since the image brightness
at each image location does not change with time, the left-
hand side of (2.1.5) is‘identically equal to zero, while the
right-hand side is different from zero almost everywhere.
Notice that keeping the sphere fixed and moving the light
source, (2.1.5) is again wrong. In this case, however, the
right-hand side is different from zero while U, is zero
everywhere. Since (2.1.4) is often assumed as a starting
point for computing the optical flow, it is interesting to
calculate explicitly the total temporal derivative of E with
respect to time. The calculations require both an accurate
definition of image formation properties and an analytical
model of the reflectance function.
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B. Scene Radiance and Image Irradiance

Let us review some definitions of photometry and make
explicit the constraints under which the image irradiance
is related to the scene radiance. The image irradiance can
be thought of as the image brightness pattern E = E(x,,
¥p), since it is the power of light per unit area at each
point (x,, y,) of the image plane. The scene radiance L is
the power of light per unit area which can be thought of
as emitted by each point of a surface S in the scene in a
particular direction. This surface can be fictitious, or may
be the actual radiating surface of a light surface of a light
source, or the illuminated surface of a solid. The scene
radiance can be thought of as a function of the point of
the surface and of the direction in space. If (a, b) is a
point on the surface S in intrinsic coordinates of the sur-
face and («, 3) polar coordinates determining a direction
in space with respect to the normal vector to the surface,
then L = L(a, b, a, ) gives the scene radiance at the
point (a, b) in the direction («, B). Given the scene ra-
diance, in principle, it is possible to compute the expected
image irradiance. For example in the case of pinhole cam-
era approximation, i.e., assuming that the camera has an
infinitesimally small aperture, the image irradiance at a
point (x,, y,) is proportional to the scene radiance at the
point (a, b) on the surface in the direction of the pinhole,
say (o, Bo), where the projected point, the original point,
and the pinhole lie on the same line (see Fig. 2). There-
fore,

E(x,(a, b), y,(a, b)) = L(a, b, ag, By) (2.2.1)

if (x,(a, b), y,(a, b)) is the image point which lies on
the line through (a, b) and the pinhole. In practice, how-
ever, the aperture of any real optical device is finite and
not very small and (2.2.1) does not necessarily hold. As-
suming that the surface is Lambertian i.e., L(a, b, a, B)
= L(a, b), that there are not losses within the system and
that the angular aperture (on the image side) is small, it
can be proved [16] that

E(x,(a, b), y,(a, b)) = L(a, b) @ cos* ¢

where (0 is the solid angle corresponding to the angular
aperture and ¢ is the angle between the principal ray (that
is, the ray through the center of the aperture) and the op-
tical axis. With the further assumption that the aperture is
much smaller than the distance of the viewed surface, the
Lambertian hypothesis can be relaxed to give [17]

E(x,(a, b), y,(a, b)) = L(a, b, o, By) @ cos* ¢
(2.2.2)

where o and (3 are the polar coordinates of the direction
of the principal ray. It must be pointed out that (2.2.2)
holds if L is continuous with respect to « and 3. In what
follows, it will be assumed that the optical system has
been calibrated so that (2.2.2) can be rewritten as (2.2.1).
Finally, notice that

(2.2.3)

S . o (da ab
V,,E-v,,:VSL-( )

dit’ dr

X0

\(xp,y,) /

Fig. 2. Scene radiance and image irradiance in the pinhole approximation.
The image irradiance at the point (x,, y,) is given by the scene radiance
at the point (a, b) on the surface in the direction of the line connecting
the two points through the pinhole Py,.

where 63 is the gradient with respect to the surface co-
ordinates, since differentiating (2.2.1) yields

V,E - (dx,, dy,) = VsL - (da, db).

III. CoMPUTING DERIVATIVES OF THE IMAGE
BRIGHTNESS IN TERMS OF SCENE RADIANCE

The general method which is used to show that optical
flow data almost always give inaccurate estimates of the
component of the motion field along the gradient of the
image brightness is presented. The Lambertian model of
reflectance and a more realistic model are assumed for
pure rotation, pure rotation, and general rigid motion of
a generic surface. The motion field and the optical flow
are exactly the same only for Lambertian objects which
translate under uniform, fixed illumination.

A. The Method

Consider a rigid surface S moving in space. From
(2.2.1), the image irradiance E at time ¢ at the point (x,,
¥p) is equal to the scene radiance L at the point (a, b) on
S, i.e., E(x,, yp, t) = L(a, b). The image irradiance at
time r + At is given by the scene radiance from S at time
t + At. As shown in Fig. 3, the point on § which radiates
toward (x,, y,) at time ¢ + At is the point (a — Aa, b —
Ab).> The unit normal vector N to S at the point (a —
Aa, b — Ab) attime ¢t + At is

N,iala — Aa, b — AD)

= N(a — Aa, b — Ab) + AN

where AN is the first order variation of N due to the mo-
tion of S during the time interval Az. Now in the case of
translation

AN =0
while in the case of rotation with angular velocity &

(3.1.1)

— -

AN = & X NAt.

The surface is assumed to correspond to a moving convex body to avoid
self-occlusions. In fact, the computations which follow hold for any con-
vex surface patch.
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Fig. 3. Computing dE/dr. The point (a, b) on S radiates toward (x,, Yp)
at time ¢. The point (a — Aa, b — Ab) radiates toward the same point

~

at time t + At. The vectors N . and Nz are the unit normal vectors to the
surface S at the point (a, b) and (a — Aa, b — Ab), respectively.

Notice that (3.1.1) can be considered as the expression
of AN for any kind of motion. Similarly, for each argu-
ment A of the scene radiance, we can write

A+ ala — Aa, b — AD)

= A,(a — Aa, b — Ab) + A4.  (3.1.2)

To compute AA, let us distinguish between arguments
of L which are intrinsic function of the surface coordi-
nates, such as texture and albedo, and those which can be
thought of as function of the surface coordinates, but, in
fact, are function of 3-D space coordinates, such as the
illumination and the point of view. If A is an intrinsic
function of the surface coordinates, it follows easily that

AA=0
while if A4 is a function of 3-D space coordinates, from

Taylor’s expansion we have

AA = VA - TAt (3.1.3)

where V is the gradient operator with respect to the 3-D
space coordinates. Let us assume that L can be written as
a function of m arguments A, i = 1, - -+, m, and of N.
Then, taking into account (3.1.1) and (3.1.2), (2.2.1) be-
comes

E(x,, ypr t + At)
= L(A}(a — Aa, b — AD)
+ AA' N,(a — Aa, b — Ab) + AN) (3.1.4)
attime ¢t + At and

E(x,, y,» 1) = L(4i(a, b), Ni(a, b)) (3.1.5)

at time 7. Therefore, using (3.1.4) and (3.1.5) and drop-
ping the subscript t we have

oE - da db L) S
% _ 9. (£,2)+ X V4D
o st (dt’ dt> 2o v

oL ., =
4+ —-+w XN

o (3.1.6)
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if p, p < m, of the AL i =1, o, m, require the use
of (3.1.3) to compute AA4, dL/3N = (3L/0N,, dL/oN,,
dL/dN,), and N = (N,, Ny, N.). ”

From (2.2.3) and the definition of ¥, (3.1.6) can be
rewritten as
oE

Yl —WpEll vyt .

PaL
ot 2

__ﬁAi.

- oL _ -
; v+ —=-w XN
=104 N

(3.1.7)

Finally, if Av, is the norm of the difference between
o, —the true component of the motion field ¥ alongV ,E—
and | V,E || ~' 0E/dt—the estimate of || 7, || which can

be obtained from (2.1.5)—from (3.1.7) we have

UR:) A oL ~

AUJ_='-‘:1_— —(':)—,-A"B — - & X N|.
|V, E| =104 N

(3.1.8)

Thus, Aw, vanishes, or the motion field and the optical
flow are the same, if the reflectance function does not de-
pend upon 3-D space coordinates and the surface under-
goes pure translation.

Let us consider now some interesting examples in de-
tail.

B. Translation of a Lambertian Surface

Consider a Lambertian surface S. In the hypothesis of
uniform illumination, the scene radiance due to S is
L=pl" N (3.2.1)
where p is the albedo of the surface, T the unit vector
which gives the direction of illumination, and N the unit
normal vector to S. If the surface is translating, substitu-
tion of (3.2.1) in (3.1.8) yields

Av, =0 (3.2.2)

since @ = 0 and none of the arguments in L depends upon
3-D space coordinates. Therefore, in the case of a Lam-
bertian surface which is translating under uniform illu-
mination it is possible to estimate correctly the component

of the motion field in the direction of ﬁpE from optical
flow data.

In the case of nonuniform illumination the right-hand
side of (3.2.2) contains an extra term due to Al A rig-
orous analysis of the relevance of this term in (3.2.2)
would require a realistic model of illumination. In prac-
tice, if the object is not moving very slowly, (3.2.2) is
expected to be satisfied almost everywhere a part from
locations where the gradient of illumination cannot be ne-
glected (e.g., shadow boundaries).

Let us consider now the case of a rotating Lambertian
surface.

C. Rotation of a Lambertian Surface

Let S be a Lambertian surface rotating in space with
angular velocity ¥ around an arbitrary positioned axis.
Applying the same argument of the previous section but



494 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 11, NO. 5. MAY 1989

taking into account the constraint (3.1.1) for KN, (3.1.8)

yields

lpi\? -1 x c_o"
IV, E|

In the case of rotation, therefore, even under uniform
illumination, the estimate of the motion field by means of
optical flow data is corrupted by a systematic error. No-
tice that the error vanishes if the surface is rotating around
an axis parallel to the direction of illumination. In the case
of nonuniform illumination again a corresponding extra
term must be added to the right-hand side of (3.3.1).

For a sphere rotating around an axis through its center,
due to rotational symmetry we have

Av, = (3.3.1)

N(a — Aa, b — Ab)
+ & x N(a — Aa, b — Ab) At = N(a, b)

for every point (a, b) on the sphere. Therefore, if p is
uniform, since the displacement in space equals the dis-
placement on the sphere, (3.1.6) gives

oF

5 0
which means that

L= ” U, H

or, in other words, that all the motion information in the
image brightness pattern is lost.

D. Translation of a Specular Surface

Let us consider, now, a more realistic reflectance
model. The scene radiance can be thought of as a suitable

linear combination of a Lambertian and a specular term
[18], i.e.,

(3.4.1)

where the Lambertian contribution is the same of (3.2.1)
and the specular term is

Lo D- R\,
D

where s is the fraction of light reflected by the surface,
D = fi + X¥ is the vector pointing from the focus of
projection to the radiating point and

L= Llamb + Lspec

(3.4.2)

R=1-2(1-N)N (3.4.3)

is the unit vector which gives the direction of perfect
specular reflection. Assuming that s is not a function of
the direction of the incident light and that is constant on
the surface, the specular term is proportional to the nth
power of the cosine of the angle between the direction of
specular reflection and the line of sight. It is clear that the
contribution to Av, due to the Lambertian term has al-

ready been computed. In the case of translation the con-
tribution of the specular term can be obtained substituting
(3.4.2) in (3.1.8) which gives

1 D-R\""' - —
Ay = ——0 — v XD)-(RXD
ST ITE] D3<D> (# x D) (Rx D)
(3.4.4)
since
D
— =

where 7 is the velocity of the translating surface. Thus,
if the reflectance function has a specular component, the
motion field and the optical flow are different even in the
case of translation. In the case of orthographic projection,
i.e., for f = oo, the right-hand side of (3.4.4) vanishes
since D — . Therefore in the appr0x1mat10n of ortho-
graphic projection, the estimate of 7, is correct for any
translating surface whose reflectance function satisfies
(3.4.1).

E. Rotation of a Specular Surface

Let us compute the contribution of the specular term of
(3.4.1) to Av, in the case of a rotating surface. Substi-
tuting (3.4.2) in (3.1.8) and taking into account the con-
straint (3.1.1), we have

D3<DDR>n (5% D) - (R x B)

—2D*[(D - N)(T

1

Av, = —5—
19,21

-3 X N)

+(1-N)D - & x N} (3.5.1)

which, in general, is different from zero. Since for f — o
(3.5.1) yields

l = n—1 - - -

Av, = — 2sn(R - 1) (B - N)(I-& XN
il [ )
+ (1N 3 xN)| (3.5.2)

the estimate of #,, in this case, is affected by error even
in orthographic approximation, unless I, &, and 7 are
parallel.

F. General Case

Let us assume now that a generic object whose reflec-
tance function is described by (3.4.1) undergoes a given
arbitrary rigid motion (composition of a translation and
rotation in space). Adding together contributions (3.3.1),
(3.4.4), and (3.5.1), for the difference Av, between the
expected and the computed component of the motion field
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by means of optical flow data we obtain

Av, =

+ (1 -N)(D '-JXN)]}l (3.6.1)

where 7 is the velocity (with rotational and translational

components) of the moving surface. The right-hand side

of (3.6.1) is generally different from zero. However, as
pointed out in Section III-A, it is different from zero
whenever arguments of the reflectance function depend
upon 3-D space coordinates. It is then clear [see (3.1.7)
and (3.1.8)] that the Av, /||v, || is lower if the variation
of the image brightness pattern over time at a given lo-
cation (measured by dE/dr) is due to physical events on
the moving surface (e.g., texture and surface markings);
conversely, it is larger the more the change over time in
intensity is due to lightness condition, abrupt changes in
the reflectance properties of the moving surface at the cor-
~2sponding location in space, or highlight boundaries of
poorly textured surfaces. It must be noted that in this anal-
ysis shadows and self-shadow effects have not been con-
sidered. They also give rise to sharp changes in intensity
which do not correspond to features in the scene. Fur-
thermore, the Phong model of reflectance does not in-
clude explicitly sharp intensity changes due to highlights.

IV. MotioN FieLps, OpTicaL FLOWS, AND
DYNAMICAL SYSTEMS

In the previous section, we have shown that the esti-
mates of the motion field which can be given in terms of
first order derivatives of the image brightness pattern, are
often inaccurate. Moreover, uncertainty of these esti-
mates cannot be measured unless further information
about the nature of viewed objects is known (or provided
by some other vision module). This result seems to cast
a shadow on the use of dense optical flow data for motion
computations, such as recovering 3-D motion parameters
and 3-D structure from motion. In what follows, how-
ever, we will argue that useful information can be ex-
tracted from dense optical flows. We introduced a theo-
retical framework in which the motion field can be
compared with several plausible optical flows. Smooth
planar vector fields can be seen as flows associated with
some 2-D dynamical systems and the theory of dynamical
systems can be used to confront them. An optical flow can
be thought of as close to the true motion field, if the to-
pological description of the two vector fields, in terms of
the theory of dynamical systems, is the same at any fixed
time.
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Let us first show in what sense the motion field and
optical flows can be associated with dynamical systems.
As mentioned in Section I, a thorough analysis—outlined
in [11]—is presented in [12]. Let a smooth convex surface
undergo a given rigid motion in space. At any given time
t, the motion field produced by the moving surface onto
the image plane—provided it has the appropriate degree
of smoothness that is, if it is continuous with first order
partial (spatial) derivatives continuous—can be thought of
as the vector field tangent to the solution to a planar sys-
tem of ordinary autonomous differential equations (see
[19] or Appendix B for mathematical details). Therefore,
the qualitative theory of planar differential equations
seems to be a natural tool for studying properties of the
motion field. The analogy is between phase portraits of
dynamical systems and motion flows. The motion field is
considered at a fixed time: the physical meaning of the
underlying dynamical system is irrelevant. Clearly, the
same argument applies to other smooth planar vector
fields, e.g., the optical flow. Since most of the relevant
information about a dynamical system can be extracted
from its singular points—that is, the points where the vec-
tor field vanishes (see Appendix B for a list of the main
singular points of planar flows)—a natural criterion to
study and confront motion field and optical flow seems to
be that they have the same number and kind of singular
points at about the same position, or, in other words, that
they are qualitatively the same. From this perspective,
quantitative difference between the motion field and op-
tical flow might no longer be relevant. It is worth noticing
that where singular points lie close to discontinuities of
the motion field, a smoothing step is expected to change
the qualitative properties of the field and of the corre-
sponding optical flows (how close is determined by the
size of the smoothing filter). Consider, for example, an
arbitrary object which is translating against the viewer.
The main feature of the motion field is an isolated singular
point which is a focus of expansion. Note that the quali-
tative structure of the field neither depends on the shape
of the object nor on its speed. If the focus of expansion
lies close to the boundary of the moving surface, the qual-
itative properties of the smoothed motion field might
change and a detailed, quantitative analysis might be re-
quired.

V. DiscussION

If our point of view is correct, the only critical feature
of the optical flow is that it must be topologically equiv-
alent to the motion field. This requirement also satisfies
two important uses of optical flow, namely to detect dis-
continuities and help long-range matching of the stereo
type, which are needed for computing structure-from-mo-
tion. Quantitative equivalence, which is unlikely in gen-
eral, is irrelevant for this use. As a consequence, many
different “‘optical flows’’ can be defined. Different defi-
nitions could be chosen on the basis of criteria such as
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computability (from image data) or ease of implementa-
tion (for given hardware constraints). This point of view
has clear implications for biological visual systems:
movement detecting calls (say, in the retina) do not have
to compute a specific optical flow, because simple esti-
mates of the motion field which preserve its qualitative
properties are equally good candidates (e.g., correlation-
like algorithms). This argument may explain why the
models proposed to explain motion dependent behavior in
insects [20], motion perception in humans [21], and phys-
iology of cells [22], [23], are all implementing quite dif-
ferent computations of optical flows. A basic question to
answer is, of course, whether these biological models are
in fact sufficiently close to the motion field to be topo-
logically equivalent to it. Indeed, we conjecture that they
are usually similar enough to preserve the qualitative
properties of the motion field. The conjecture is based on
results [24] showing that most of the biological models
proposed so far can be considered as special instances or
approximations of a general class of nonlinear models
(characterized as Volterra systems of the second order).

APPENDIX A
PERSPECTIVE AND ORTHOGRAPHIC PROJECTIONS

In this section we explain in more detail the geometry
of perspective projection used in the paper. In order to
obtain orthographic projection as the simple limit of per-
spective projection for f = oo, where fis the focal length,
the focus of projection cannot be located at the origin of
the system of coordinates. To simplify the geometry with-
out losing in generality, let the origin lie on the projection
plane. The vector pointing from the focus to a point X =
(x,y,z)isnow fr + X. To obtain the expression of the
projected point X,, from Fig. 1 notice that

fi+x it

A.
(Fi+x) -7 f (A1)
From (A.1), we have
Sl R I
and finally
= f = =, =2 —
x”_—f_———+5c‘-h’(x (X -n)n)
or
— f — — —
(7 x (X x n)). (A.2)

In the limit of orthographic projection (i.e., f = o),
X, = Xo, and (A.2) yields
Ax(Xxn). (A.3)

Combining (A.2) and (A.3), we obtain the general re-
lationship between perspective (X,) and orthographic

.i"o:
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(X,) projection that is,

~

X, =

p f+

APPENDIX B
PLANAR DYNAMICAL SYSTEMS

— Xp.
*n

=

A planar dynamical system is a C' map ¢: R X 4 = A,
where A is an open subset of R* and writing ¢ (¢, x) =
¢,(x), the map ¢,: A — A satisfies:

a) ¢g: A — A is the identity;

b) the composition ¢,(d,(x)) = ¢, foreacht, s e R.

A planar dynamical system ¢, on A gives rise to a planar
systems of differential equations on A that is, a vector field
y: A = R? defined as follows:

(x) = < 6,(x) (1)
x) = — . .
g dt ’ =0

Thus, for every x, y(x) is the tangent vector to the curve

t = ¢,(x) atz = 0. Equation (B.1) can be rewritten as

dx

— = y(x).

o (B.2)

Ify(x)isaC ! vector field, (B.2) defines a planar dynam-
ical system which can be thought of as a one-parameter
family of transformation ¢,: A = A describing the motion
of the points in A as the time passes. The trajectories of
the points are given by the solution curves to (B.2). Since
(B.2) is autonomous (that is, the right-hand side does not
depend explicitly on t), if y(xo) =0, thenx = x"isa
solution to it. Solutions like x = x° are called equilibrium
points or singular points. In the case of linear systems,
useful qualitative information about the behavior of the
solution to (B.2) can be obtained from the eigenvalues of
the matrix M of the coefficients of the differential equation
computed at xy. The restriction to planar systems reduces
the classification of singular points to four fundamental
cases:

1) M has real eigenvalues of opposite signs. In this case
the singular point is a saddle: the saddle is unstable (a
singular point is stable if any nearby solutions to it stays
nearby for all the future time. It is unstable otherwise).

2) The eigenvalues have negative real parts. The sin-
gular point is a sink which is stable. The main property
of a sink is that

lim x(¢) = xo

t— o
for any nearby solution x(7). Qualitatively, the phase
portrait of the solutions—that is, the family of the solu-
tion curves as a subset of R*—looks like Fig. 4, where
only some tangent vectors of some of the solution curves
have been drawn.

Sinks can be classified depending on further character-
istics of the eigenvalues. A focus (Fig. 4), for example,
represents the case of coincident eigenvalues (M is a mul-
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Fig. 4. Vector field tangent to a planar sink; all the solutions curves are
pointing toward the singular point.

tiple of the identity matrix); a node, the case of different
real eigenvalues; a spiral, the case of complex conjugate
eigenvalues. A sink-increasing rotational component cor-
responds to each different case.

3) The eigenvalues have positive real parts. The sin-
gular point is a source. The main property of a source is
that

lim lx(t)l = o
1™
and
lim x(7) = x
- -

for any nearby solution x (7). A source can be considered
as the dual case of a sink: the phase portrait of a source
and of the corresponding sink are the same except that for
the direction of the vectors which must be reversed. Re-
versing the arrows in Fig. 4, for example, the phase por-
trait of a system with coincident real positive eigenvalues
would be obtained. Obviously, sources are unstable.

4) The eigenvalues are pure imaginary. The singular
point is a center. All the nearby solutions are periodic
with the same period. A center is a stable equilibrium.
For a reason that will be made clear soon, this last case
is of little practical interest, since even a small perturba-
tion of the field will make the orbits spiral inward toward
(or outward from) the singular point, changing the quali-
tative properties of the solution curves. In other words, a
center is not structurally stable.

The crucial point is that this classification is exhaustive.
Every singular point (in the linear case) looks like a sad-
dle, a sink, a source, or a center. The same classification
holds for the nonlinear case with respect to the eigenval-
ues of the derivative of the right-hand side of (B.2), con-
sidered as a linear operator. This can be seen considering
the best linear approximation of the system in the neigh-
bor of the singular point. Assuming that the real part of
the eigenvalues of the matrix representative of the linear
approximation at the singular point does not vanish, the
phase portrait of the system in the neighbor of the singular
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point looks like in the corrisponding linear approxima-
tion. A dynamical system for which the real part of the
eigenvalues of the linear approximation at each singular
point does not vanish—with the additional conditions that
there are no trajectories joining saddles and all the limit
cycles are either periodic attractor or periodic repeller—
is said to be structurally stable. 1t is clear that a dynamical
system with a singular point whose linearization is a cen-
ter is not structurally stable. Intuitively, a dynamical sys-
tem is structurally stable if all the dynamical systems suf-
ficiently close to it, share the same qualitative properties.
A very important result of the theory of planar dynamical
systems [25] says that the set S of planar dynamical sys-
tems which are structurally stable is dense in the set T of
all the planar dynamical systems. Since S is also open in
T, this result implies that almost all the planar dynamical
systems are structurally stable.
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