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On Edge Detection

VINCENT TORRE anD

Abstract—Edge detection is the process that attempts to characterize
the intensity changes in the image in terms of the physical processes
that have originated them. A critical, intermediate goal of edge detec-
tion is the detection and characterization of significant intensity
changes. This paper discusses this part of the edge detection problem.
To characterize the types of intensity changes derivatives of different
types, and possibly different scales, are needed. Thus, we consider this
part of edge detection as a problem in numerical differentiation.

We show that numerical differentiation of images is an ill-posed
problem in the sense of Hadamard. Differentiation needs to be regu-
larized by a regularizing filtering operation before differentiation. This
shows that this part of edge detection consists of two steps, a filtering
step and a differentiation step. Following this perspective, the paper
discusses in detail the following theoretical aspects of edge detection.

1) The properties of different types of filters—with minimal uncer-
tainty, with a bandpass spectrum, and with limited support—are de-
rived. Minimal uncertainty filters optimize a tradeoff between com-
putational efficiency and regularizing properties.

2) Relationships among several 2-D differential operators are estab-
lished. In particular, we characterize the relation between the Lapla-
cian and the second directional derivative along the gradient. Zero
crossings of the Laplacian are not the only features computed in early
vision.

3) Geometrical and topological properties of the zero crossings of
differential operators are studied in terms of transversality and Morse
theory.

We discuss recent results on the behavior and the information con-
tent of zero crossings obtained with filters of different sizes. These re-
sults imply a specific order in the sequence of filtering and differentia-
tion operations. Topological properties are preserved by level crossings.
Setting a level in the optimal filtering stage is a threshold operation—
which can be implemented in an adaptive way—that preserves all the
“‘nice’’ geometrical and topological properties of zero crossings.

Finally, some of the existing local edge-detector schemes are briefly
outlined in the perspective of our theoretical results.

I. INTRODUCTION

ISION begins with the transformation of a flux of

photons into a set of intensity values at an array of
sensors. The first step in visual information processing is
to obtain a compact description of the raw intensity val-
ues. The primitive elements of the initial description
should ideally be complete in the sense of representing the
full information contained in the image, and meaningful
(that is, capturing significant properties of the three-di-
mensional surfaces around the viewer). Physical edges are
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one of the most important properties of objects since they
correspond to object boundaries or to changes in surface
orientation or material properties [5], [8], [12]-[14], [25],
[33], [38], [44].

Three-dimensional edges are often mapped by the im-
aging process into critical points of the two-dimensional
intensity profile formed in the eye or in a camera. The
ultimate goal of edge detection is the characterization of
intensity changes in the image in terms of the physical
processes that originated them. For instance, a shadow
may be distinguished from an occluding boundary and
material properties may be identified from the associated
intensity changes.' A traditional belief in computational
vision—that we fully share—is that this goal cannot be
reached in a single step. At least two separate stages are
required. First, one needs to characterize the intensity
changes in the image. Second, one uses this representa-
tion, combined with high-level knowledge, to make as-
sertions about the 3-D surfaces and their properties.

The first part of edge detection then requires the eval-
uation of derivatives of the image intensity. To charac-
terize the types of intensity changes, derivatives of dif-
ferent type and order may be needed, possibly at different
scales. The first part of edge detection is thus a problem
in numerical differentiation. In this paper, we will con-
sider only this first stage of edge detection as the process
that attempts to detect, localize and characterize local
edges, the sharp changes in intensity that are natural prim-
itives for later processing. We will not consider here the
second stage of edge detection that includes processes
such as boundary detection, segmentation, region grow-
ing, and groupings of local edges (that group local edge
elements into structures better suited for the interpretation
of image data in terms of the underlying physical pro-
cesses). ,

In this paper, we begin by analyzing the problem of
differentiating a sampled image. We show that differen-
tiation is an ill-posed problem (in the sense of Hadamard).
Well-posedness and numerical stability of the differentia-
tional step requires the regularization of the image inten-
sities by a regularizing filtering operation preceding dif-
ferentiation. This argument represents a novel and rig-
orous justification of the basic sequence of filtering and
differentiation that can be recognized in all existing local
edge-detector schemes. We then examine in detail the fil-
tering and the differentiation stage. We continue our anal-

IThe use of color information—which we will not discuss in this paper—
is a natural extension within this framework.
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ysis by characterizing properties of the critical points of
the differentiation operation.

Our main practical conclusions in this paper are 1) that
Gaussian filtering, although not optimal under all condi-
tions, is near-optimal, and computationally convenient;
2) the choice between rotationally invariant operators (ro-
tational filters and rotational invariant operators (rota-
tional filters and rotational invariant differential RID op-
erators, as the Laplacian or the second derivative in the
direction of the gradient) or directional operators (direc-
tional filters and directional differential DD operators such
as directional derivatives) depends on the subsequent in-
formation processing task. RID operators ensure closed
edge contours, that are not provided in general by DD
operators.

We now outline the organization of this paper in more
detail.

A. Organization of the Paper

In this paper, we consider edge detection as the process
of computing derivatives in the two-dimensional intensity
image. In Section II, we show that the problem of differ-
entiation of a sampled image is ill-posed. We prove that
filtering of the image prior to differentiation is necessary
for regularizing the problem and make it well posed. The
filtering step is analyzed in Section III. Filters with min-
imal uncertainty (Hermite and Gabor functions), with
bandpass properties (sinc and prolate functions) and oth-
ers that are support limited are reviewed. Filter with min-
imal uncertainty tend to optimize the trade off between
band-limited characteristics (required for a correct sam-
pling and for ‘‘regularizing’’ the differential operation)
and computational efficiency.

Section IV is devoted to the differential stage. We con-
sider separately the second-order RID and DD operators
and analyze their main properties. The main focus is on
the localization of the zeros of the Laplacian V2, the sec-
ond derivative along the gradient 3°/dn’ and the usual
second-order partial derivatives. Section V considers the
geometrical structure of the contours formed by edge de-
tectors and, in particular, their closure property. For this
purpose, we use elementary tools from transversality the-
ory. The problem of the geometry of contours across dif-
ferent spatial scales—where scale is parameterized by the
size of the filter—is considered in Section VI. A compar-
ison of the results of our study to several previously pro-
posed edge detectors is given in Section VII, and a dis-
cussion of the ‘‘best’’ filtering and differential steps is
given in the final section.

II. CoMPUTING DERIVATIVES OF IMAGES

In this section, we consider the problem of computing
(spatial or temporal) derivatives of samples intensity im-
ages. Our main result is a rigorous justification of filtering
before differentiation in terms of the theory of regulari-
zation. Our approach also clarifies the issue of the optimal
filter for edge detection. In practice, it justifies the use of
suitable derivatives of Gaussian-like filters in edge detec-
tion (for linear differential operators).
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In the first section, we discuss the ill-posed nature of
differentiation, which is equivalent to its lack of robust-
ness against noise in the input data. In Section II-B, we
review the main techniques for transforming differentia-
tion into a well-posed problem. Section II-C shows that
numerical differentiation can be regularized via previous
convolution of the image data with an appropriate filter.
In Section II-D, we consider the application of two reg-
ularization techniques, and show that they lead to spline
interpolation and to spline approximation respectively
(prior to the differentiation stage). In these methods, reg-
ularized differentiation is thus performed by convolving
the data with an appropriate derivative of the regularizing
filter. In some situations, however, it may be more con-
venient to first filter the data and then differentiate the
results. We consider some implications of this situation
in Appendix A. The problem of sampling appropriately
the image prior to filtering and differentiation is discussed
in Appendix B.

A. Ill-Posed Nature of Differentiation

In machine vision, as well as in most numerical prob-
lems, the data are noisy. Noise in the phototransduction
process is ultimately unavoidable. Sensor noise arises at
least in part from quantum fluctuations in the number of
absorbed photons per sensor and unit time. This repre-
sents a fundamental limitation for real-time imagery when
integration time and size of the sensors are limited by the
need of high temporal and spatial resolution. It is criti-
cally important, therefore, that the results of numerical
operations performed on the data are not too sensitive to
noise. It is well known that differentiation is not robust
against noise. Even a small amount of noise may disrupt
differentiation. Let us consider a function f(x) and f(x) =
f(x) + € sin wx. f(x) may be close to f(x) according to
standard norms (LZ, L%”, -+ ), provided ¢ is sufficiently
small. On the other hand, f'(x) may be quite different from
f(x) if w is large.

In the beginning of this century, Hadamard defined a
mathematical problem to be well-posed if its solution

1) exists,

2) is unique, and

3) depends continuously on the initial data (when the
problem is not only well-posed, but also well-condi-
tioned, then the solution is robust against noise).

Most of the problems of classical physics are well posed
in this sense, and Hadamard argued that meaningful phys-
ical problems had to be well posed.

Differentiation of the function f(x) is a typical ill-posed
problem, since it can be seen as the solution to the inverse
problem

gx) = Af(x) 2.1
where Af(x) is the integral operator
S_mf(ff) dx = S_ h(x — %) f(x) dx 2.2)
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where h is the step function. It is well known that inverse
linear problems in which g(x) and f(x) belong to Hilbert
space are ill-posed [52].

B. Regularization Techniques

Rigorous methods for transforming ill-posed problems
into well-posed problems have been developed over the
past years (see especially [51] and [52]. Regularization of
the ill-posed problem of finding x from the data y, such
that Az = y requires the choice of suitable norms |||,
(usually quadratic) and of a stabilizing functional Il Pz|l.
The choice of the stabilizing functional and of the norms
is dictated by mathematical considerations, and most crit-
ically, by an analysis of the physical constraints on the
problem. There are three main methods of standard
regularization [6a]:

1) Among z that satisfy |Pzll < C, (where C, is a con-
stant) find z that minimizes

4z — yll 2.3)

2) Among 7 that satisfy |4z — y|| < C, find z that min-
imizes

[Pzl (2.4)

and
3) Find z that minimizes

ll4z — ylI* + NIPz|?,

where \ is a regularization parameter.

The first method consists of finding the function z that
satisfies the constraint || Pz|| < C,, and best approximates
the data. The second method computes the function z that
is sufficiently close to the data and is most ‘‘regular.”” In
the third method, the regularization parameter A controls
the compromise between the degree of regularization of
the solution and its closeness to the data.

Differentiation can also be regularized using the stabi-
lizing operators introduced by Tikhonov [52] and Bertero
[6a]. In the case of differentiation, these operators are
equivalent to filtering the data with low-pass filters of the
kind we will discuss in Section III.

In the next section, we show how to use methods 2) and
3) directly for solving the ill-posed problem of numerical
differentiation. In Section II-D, we will consider a wide
class of regularizing filters that correspond to Tikhonov
stabilizing operators and can be used to make numerical
differentiation well posed.

(2.5)

C. Regularizing Differentiation with Interpolating and
Approximating Splines

Poggio, Voorhees, and Yuille [40] have recently ap-
plied the second and the third regularizing methods to the
problem of edge detection. Following Schoenberg [46]
and Reinsch [42a], they chose for P the simplest form of
Tikhonov’s stabilizing functionals with P = d*/dx* and
the usual L, norm. This choice corresponds to an a priori
constraint of smoothness on the intensity function. Its
physical justification is that the noiseless image has to be
smooth in the sense that all its derivatives must exist and
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be bounded because the image is band limited by the op-
tics. Physically, this constraint of smoothness allows us
to effectively eliminate the noise that creeps in after or
during the sampling and transduction process, and makes
the operation of differentiation unstable and ill posed. This
is, of course, not the only stabilizing functional for this
problem, as we will see in the next section, but it is prob-
ably the simplest one.

Let us now consider in more detail for the second and
third regularization methods. Consider a function f(x) de-
fined in [a@, bl andbe A =a < xy < x|, " * ,x, = ba
mesh of distinct points, and

Jo = fx) (2.6)

the values of f(x) at x;. Given the sample points of f, the
problem of computing the numerical derivative f; at x; is
ill posed. The second regularizing method leads (using
the stabilizing operator P = d*/dx* and the L, norm) to
the search of a function S(x) such that 1)

Sxy) =f 1, 2.7

and 2) ||PS(x)|| is minimized. The stabilizing functional
is

,n

b

S |S"(x)|? dx. (2.8)
The solution to this problem is given by the cubic spline
Sa(x) which interpolates f(x) in A [3]. As a consequence,
the numerical derivative f; will be the value of Sj(x) in
x,. For equidistant points the following equation holds

3
fie = n {a@) (fert — fio) — @ (fivz — fio)
+ @ (fies = fioa)s o b 2.9)
where & is the sampling period, and
x x\2
alx) = 5 - <'2'> -1 2.9
that is
1
fie = 7 [0.804( fir1 — fi-1) — _-215(ﬁ<+2 — fi-2)

+ 0.0577(fi+3 — fe=3)» == 5] (2.10)

Poggio et al. [40] have obtained the following theorem
which is a reformulation of results due to Schoenberg [45],
[46].

Theorem: The cubic spline interpolating the data points
assumed on a regular lattice and satisfying the second
regularizing method with P = d*/dx* can be obtained by
convolving the data points with a cubic spline filter, which
corresponds to the L* function of Schoeberg [45].

Numerical differentiation, therefore, can be regularized
for exact data on a regular grid by convolving the data
points with the first derivative of the L* filter given by
Schoenberg, which is a cubic spline.

In the case of nonexact data, which is the most natural
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Fig. 1. (a) The convolution filter obtained by regularizing the ill-posed
problem of edge detection with method 3) [40]. It is a cubic spline (solid
line), very similar to a Gaussian (dotted line). (b) The first derivative of
the filter for different values of the regularizing parameter \, which ef-
fectively controls the scale of the filter [39].

situation, the third regularizing method has to be used
leading to the problem of finding S(x) such that

El (fe = SC)* + \ S IS"x)*dx  (2.11)

is minimum. Both Schoenberg [46] and Reinsch [42a]
proved that approximating cubic splines are the solution
to this variational problem. Poggio et al. [40] have proved
the following result.

Theorem: The solution to the variational problem
(2.11) in the case of inexact data on a regular grid (and
appropriate boundary conditions), can be obtained a) by
convolving the data with a filter, b) which is a cubic
spline, and c¢) which is very similar to a Gaussian.

This implies that regularized differentiation of image
data can be performed by convolving the data with the
first derivative of a cubic spline filter, which is very close
to the Gaussian, as shown in Fig. 1.

This result is the simplest and most rigorous proof that
a Gaussian-like filter represents the correct operation to
be performed before differentiation for edge detection. We
refer to the paper by Poggio et al. [40] for a detailed proof
of this result and for a comparison between the optimal
filter and the Gaussian. Poggio et al. [40] also analyze the
role of the regularizing parameter A, its connection to the
optimal scale of the filter, and discuss methods for finding
the optimal A.

D. Regularizing Filters

In the previous section we have seen that differentiation
can be regarded as the inverse problem of the integral
equation-

X

= roa @.12)

where f(x) must be recovered from the knowledge of the
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data g(x), which is usually given only on a discrete lattice.
This problem is ill posed, and can be regularized by
the regularizing methods previously mentioned. Further-
more, Tikhonov and Arsenin [52], see also Bertero [6a],
have proved that it is generally possible to regularize in-
verse problems by using Tikhonov’s stabilizing operators.
For equations of the convolution type as (2.12), the sta-
bilizing operators correspond to convolving g(x) with a
filter F(x, o) (where o = 0 is a parameter) whose Fourier
transform F(w, ) satisfies the following conditions:

(C1) F(w, «) is bounded for « = 0 and all w.

(C2) F(w, ) is an even function with respect to w, and
it belongs to L,(—o0, + ),

(C3) F(w, a) jw belongs to L,(— o0, + o).

(C4) For every a > 0 it holds lim, .. o Flw, @) = 0.

(CS5) F(w, ) —» 1l as @ = 0 and F(w, 0) = 1.

This regularizing filter is equivalent to a smooth low
pass filter. In the next chapter, we will discuss three dif-
ferent classes of low pass filters that have been used for
edge detection. The first two of them fully satisfy the pre-
vious conditions (C1-CS5), and are therefore regularizing
filters in Tikhonov’s sense. As a final remark, it is inter-
esting to notice that this regularizing filters usually cor-
respond to the solution of variational principles of the type
provided by the third regularization method with an ap-
propriate stabilizer P (compare [52, p. 121]).

III. FILTERING

In this section, we will make some preliminary obser-
vations on filtering and then we will review three kinds
of low-pass filters, which have been used in machine vi-
sion for edge detection. We will consider the bandpass
filter in Section III-A, support-limited filters in Section
III-B, and minimal uncertainty filters in Section III-C. Our
conclusion is that a bandpass filter as well as minimal un-
certainty filters are good regularizing operators for differ-
entiation in the sense of Tikhonov, while support-limited
filters are only marginally useful.

As in the study of functions in analysis, many proper-
ties of intensity changes can be characterized in terms of
zeros of appropriate derivatives. For instance, one-di-
mensional step edges in intensity correspond to extrema
of the first derivative, whereas roof edges correspond to
zeros in the first derivative. The main goal of the filtering
and differentiation stage in edge detection is to produce a
representation of zeros and extrema. Interestingly, the
type of derivative—whether directional or rotationally in-
variant—and the type of representation—whether zeros or
extrema—dictate some general properties of the filter to
be used. We will now briefly discuss these two points.

The first point is obvious: directional derivatives re-
quire one-dimensional filters properly oriented along the
chosen direction; when rotationally invariant operators are
used, the filter fis a function of the radial coordinate p.

We restrict ourselves to examine linear space-invariant
filters. Since isotropy can be assumed, the shape of filters,
when viewed one-dimensionally, is an even or odd func-
tion. Let us now consider the implications of this for the
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case of step intensity edges. Because of the arguments
developed in the previous section, we detect intensity
edges from the zeros of a suitable derivative of the filtered
intensity profile (i.e., its critical points). If the shape of
the step edge to be detected is S(x), defined as

=1 x>0
S(x) ,
=0 x=<0

then the output g(x) of the convolution f(x) - S(x) where
f(x) is the filter, will be

g(x) = F(x) — F(— ),
with F(x) the integral primitive of f(x). Therefore,

e the extrema of g(x) correspond to the zeros of f(x),

e the zero-crossings of (d 2/dx?) g(x) corresponds to the
extrema of f(x).

Three consequences can be derived from these obser-
vations.

1) If we are interested in the extrema of the output g(x),
and if we want to have an extremum located at the posi-
tion of the edge, then f(x) must be an odd function.

2) If we are interested in the zero-crossing of (d?ldx?)
g(x), and if we want to have a zero-crossing located at the
position of the edge, then f(x) must be an even function.

3) If we are interested in the extrema or Zero-crossings,
and if f(x) has many zero-crossings, we will have many
secondary extrema or zero-crossings. To avoid false edge
detection, f(x) should have the least number of zero-
crossings, and the optimal situation would then be such
that

e if f(x) is odd, then f(x) has only one zero,

e if f(x) is even, then f(x) has no zero.

A. Band-Limited Filters

Band-limited filters are an obvious choice for regular-
izing differentiation, since the simplest way to avoid
harmful noise is to filter out high frequencies that are am-
plified by differentiation. Linear and circular prolate func-
tions constitute an especially interesting class of band-
limited filters [18], [29]. Linear prolate functions y,(x)

are defined by the relation
o . "2 . X WXy
S 0 ‘//n(x) e’ dx = _Q—”—— \bn <_§2—> ’ (32)

where A\, are called ‘‘linear prolate eigenvalues.”” From
(3.2), we see that y,(x) depends on two parameters, xg
and Q, whose significance will be seen later. The value
of A, is a function of ¢ = x,{2 and may be written as X\ ,(x,
¢). Y,(x) depends on c. The main properties of y,(x) are

1) ¥,(x) are band-limited,

2) Y, (x) are orthogonal on both the interval [—Xx,, Xo]
and [—oo, +o0], with

3.1

+ oo
S _ V) ¥nl) dx = O

(3.3)
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3) ¥,(x) form a complete set of functions of the space
of band-limited functions whose Fourier transform F(w)
is F(w) = 0 for |w| = Q.

In the defining expression (3.2) of y,(x), there are three
constants, Q, \,, and xy. From (3.3), we see that { is the
cutoff frequency and from (3.3), x, is half the length of
the finite interval over which linear prolate functions ,(x)
are orthogonal. From (3.3), we also see that \ , represents
the fraction of energy of ¥,(x) within [x| =< xo. The de-
pendence of A, on ¢ = xQ is shown in [18, Fig. 4.3].
Therefore, once we have chosen 2, we can find ¢, and
consequently x, such that energy of y,(x) is almost com-
pletely contained in |x| < x,.

Linear prolate functions have the nice property that the
band-limited function with cutoff frequency { and maxi-
mal energy concentrated in [—x, Xo] is ¥o(x) with ¢ = Q
* xo. Similarly, the odd band-limited function with cutoff
frequency  that has maximal energy concentrated in
[—xo, Xo] is ¥, (x) with ¢ = @ - x,. Linear prolate func-
tions are also useful for solving the inverse problem; that
is, the strictly support-limited function in [—xo, xo] that
has maximally concentrated frequencies in —[(, @] is

f = on\b()(X, C) C =Xy * 99 (34)
where D, is the operator defined as
4 = fo  |x[ =x
Dy, f@x) = , (3.5)
=0 |x] > xo

These results clearly show the difference between Y(x)
and sinc (x). They are both band-limited, but yo(x) falls
off more rapidly than sinc (x) (see [29, Fig. 2]. On the
other hand, the strictly support-limited function, which
has the minimal spread of frequencies, is not a Haar func-
tion or a difference-of-boxes filter (see later) but is
Do¥o(x).

Oscillations in the filter may produce ringing phenom-
ena in the edge-detection process. To reduce these phe-
nomena, it is necessary to have maximal energy of ¥(x)
[or ¥,(x)] concentrated in the main lobe. With a value of
c equal to 7, more than 99 percent of the energy of Yo(x)
and y,(x) is concentrated in [—Xo, Xo].

It is immediate to verify that band-limited filters satisfy
all conditions (see Section III) of Tikhonov in order to
regularize differentiation.

If we are interested in rotationally invariant two-dimen-
sional filters that are band-limited, we can simply take
even linear prolate functions ¥,(x), n = 0, 2,4, - -+,
and substitute x with Vx> + y* = p. Now y,(p) is a band-
limited function, but does not have the two-dimensional
analog of properties (1)-(3). These properties are satisfied
by the circular prolate functions ¥,(p), defined by relation

g Jo(wp) ¥, (p) p dp = (—1)" % \5\‘; ¥, <%>,
0

(3.6)

where J, is the Bessel function of order zero.
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B. Support-Limited Filters

All real filters have a finite extension and are support
limited. Computational efficiency requires that the sup-
port of a filter is as compact as possible. Therefore, it is
interesting to investigate the properties of filters with
strictly limited support. The simplest even filter with a
strictly limited support and with unitary energy is

INZD  |x| =D
0 x| > D’

f)

]

whose Fourier transform F(w) is

2 sin wD
F(w)—\/l:) o

3.7
In two dimensions, we have
INT*  p < po
flp) = ,
0 P > po
whose Fourier transform is
1 J
Flw) = —= 1(wpg) (.8)

Vo oow

This kind of filtering represents the well-known *‘blur-
ring’’ of the image through a circular aperture of radius
Po-

It is important to observe that this class of support-lim-
ited filters fails to satisfy, in a strict sense, the five con-
ditions of Section II-D. In particular, condition 3) (F(w,
a) jw belongs to L,(—o, +)) is not satisfied, because
differentiation introduces back high frequencies in the
same amount as they are removed by this type of filtering.
Thus, support-limited filters are not good regularizing fil-
ters in the sense of Tikhonov.

If we are interested in odd filters, the simplest support-
limited filter is

=0 |x] > D
1
X)) = —— 0<x<D, 3.8a
2D *
whose Fourier transform is
1 |2
Flw) = — |= (1 — cos wD). (3.8b)
JjoND

This filter has already been proposed by Herskovitz and
Binford [24] and is commonly called DOB (difference of
boxes). It is also a Haar function (see [23, Fig. 19] and
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[28, p. 399]. The system of Haar functions is complete
and constitutes a basis for all square integrable functions
on a bounded interval. This property may have some rel-
evance in the context of image processing with Haar func-
tions. Support-limited filters that are even functions can
be easily extended in two dimensions by a simple rotation
around the origin. A complete set of support-limited func-
tions in two dimensions, which can be used as filters, is
the Haar system with two variables (see [23]). The Haar
function of (3.8) has the nice property of being the opti-
mal support-limited filter that maximizes the signal-to-
noise ratio for an ideal step edge, S(x). It is easy to see
that spatial spread of f(x) favors the signal-to-noise ratio,
while spatial concentration favors localization, for in-
stance of zero crossings. This can be seen as another for-
mulation of the uncertainty relation [13].

C. Filters with Minimal Uncertainty

In the two previous sections, we analyzed band-limited
and support-limited filters. Band-limited filters have the-
oretically infinite support. A drawback of support-limited
filters is that they are regularizing only in a weak sense.
It is natural, then, to try to find an optimal compromise
between these two types of filters. A measure of the spread
of a function f € L*(®) in the space and frequency domain
is the uncertainty AU, defined as

AU = QX, (3.9)
where
S & — %)’ f(x) dx
) — (3.10)
S f2() dx
+ o
X = S xf2(x) dx (3.11)
g (@ — @) |F(w)|* dw
A — (3.12)
[ IFoP o
F(w) is the Fourier transform of f(x) and
o= S w|F(w)|* dw. (3.13)

Notice that @ is proportional to the density of zero cross-
ings for Gaussian white noise [37], [36, p. 487]. It is well
known that the Gaussian function ¢ *”/" is the real func-
tion f€ L*(®) that minimizes the uncertainty AU. On these
grounds it has been proposed by Marr and Hildreth [33]
as the optimal filter. The uncertainty of an even or an odd
function f € L*(®) can be easily computed if its represen-
tation in terms of Hermite functions is known; that is, if
we know the set of ¢, such that
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+o
f@) = X cupn), (3.14)

where
eu(x) = e Hy(x) (3.15)

H,(x) is the Hermite polynomial of order n. The uncer-
tainty of ¢,(x) is simply n + 3. If f(x) is an even function,
then

+o0
f@) = 2 cupul), (3.16)
and the uncertainty AU is given by
AU = NA* — B?
+o0
2 2k + DXzs
q=r -
A
+oo
kZO CorracuNCk + 2)2k + 1)
B=*% 3.17
I G40
If f(x) is odd,
+ oo
f@ = X cmsiomei®), (3.18)
and the uncertainty AU is given by
AU = 4> — B?
+ o0
2 Ch+1+) T
e
7112
+ o
2 conrscnaV@h + 32k +2)
B = "=2 (3.19)

A

Equations (3.16)-(3.19) follow from properties of Her-
mite functions. We can easily see that the uncertainty of
Hermite functions ¢,(x) increases with n as the number of
zero-crossings of ¢,(x) increases. From these observa-
tions, we see that good filters will be composed by Her-
‘mite functions with low n. From the point of view of un-
certainty, the optimal even filter is e and the optimal
odd filter is xe "’ (the two-dimensional case has been
treated by [17]). Another class of functions with small
uncertainty consists of Gabor functions

by (x) = @707 i Gt 90 (3.20)

They are complex functions of a real variable and have
uncertainty AU equal to 3. However, the real (and imag-
inary) part of ¢, (x) do not have minimal uncertainty. The
only real function with uncertainty equal to } is the
Gaussian.

Filters with minimal uncertainty, as well as bandlimited
filters, satisfy the conditions of Section III.
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— prolate

---- gaussian
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Fig. 2. Comparison between the Gaussian and prolate function.

1) Relation Between Prolate and Hermite Func-
tions: The essential difference between prolate and Her-
mite functions is that the former are bandlimited and fall
as 1/x, while the latter fall off faster—somewhat too fast
to be bandlimited. It has been shown, however, that a
crude approximation of ¢,(x), when c is large (see [48])
is

Yal) = D,xv20), (3.21)
where D, is a Weber parabolic cylinder function. Now
D,xV2¢) = e P H o) = Y,(x),  (3.22)

where H,(x) are the usual Hermite polynomials. This ap-
proximation fails for large x, where y,(x) falls off as 1/x
and D,(x) as a Gaussian function. However, when c is
larger than 7, then y(x) and ¥,(x) have more than 99 per-
cent of their energy in [ —x, xo], where the approximation
(3.22) is satisfactory. In Fig. 2, we see the comparison
between a Gaussian function (dotted line) with variance
equal to V2/c and Yo(x) (solid line) with ¢ equal to 7.
Yo(x) has been computed according to the approximation
described in [18].

'2) Gaussian Filtering and the Heat Equation: We con-
sider briefly an interesting analytic property of Gaussian
filtering of images. Gaussian filtering, i.e., the convolu-
tion of the image I(x, y) (when I(x, y) is bounded and
continuous) with the Gaussian,

e~ RHYIT (3.23)
can be seen as a solution at an appropriate time ¢ = a2
of the two-dimensional heat equation.

Pu Fu_
ax2 ' 3yr o’

with the initial condition

(3.24)
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u(x,y, 0) = I(x, y). (3.25)

This is because the ‘‘source solution’’ of the heat equation
[54] is

—(x2+y2)/4t
k(x, y, t) = “—‘\/—4—7, (3.26)
with time playing the role of the variance, that is,
o? =21 (3.27)

From [54, theorem 4.1] the solutions of the heat equation
are entire functions of x and y. In other words, the con-
volution of a continuous and bounded function with a
Gaussian generates an entire function. This characterizes
well the strong regularizing properties of the Gaussian fil-
ter.

IV. DIFFERENTIATION STAGE

In this chapter, we will discuss the properties of some
differential operators that have been proposed and used in
edge detection. We first briefly consider directional deriv-
atives in Section IV-A. In Section IV-B, we discuss prop-
erties of two second-order rotationally invariant differen-
tial operators: the Laplacian and the second derivative
along the direction of the gradient. We stress here that it
is unlikely that zero crossings of one differential opera-
tor—such as the Laplacian—are sufficient for early vision.

The many two-dimensional differential operators that
can be used for detecting sharp changes in intensity can
be classified according to whether they are 1) linear or
nonlinear, and 2) directional or rotationally symmetric. In
this paper, we use the (somewhat inappropriate) termi-
nology of zeros of a differential operator Df( f defined in
V € ®?) in the sense of the locus of points of V such that
Df = 0. This notion is different from the usual definition
of the kernel of an operator D, that is, the set of function
fsuch that Df = 0 in V.

A. Directional Differential Operators (DD)

The directional differential (DD) operators used in edge
detection are the usual directional derivatives. The use of
directional operators has been criticized ' [25] on the
grounds that such operators lead to smearing of zero-
crossing contours (see [25, Fig. 11]). In that case the ver-
tical operator was implemented with an operator of n X
m pixels. Smoothing was performed in both the orthogo-
nal and the parallel direction to the filter’s orientation. A
correct implementation of a vertical derivative, however,
consists of an operator of 1 X m pixels. The smearing
observed by Hildreth [25], is not due to the use of a di-
rectional operator but to the distortion introduced by a too
large width of the operator. The concomitant use of sev-
eral directional derivatives has been proposed by several
authors [9], [13]. Since in ®? the directional derivative in
any arbitrary direction can be expressed in terms of d/dx
and 0/dy, it is evident that in a noise-free image the use
of more than two-directional derivatives is of no help at
all. In a noisy image the use of several directional deriv-
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rectional derivatives may be useful for increasing the sig-
nal-to-noise ratio.

We will see in a later paper that the use of just two
narrow directional derivatives is sufficient to detect all
edges detected by rotationally invariant differential oper-
ators or by a large set of directional derivatives.

B. Rotational Invariant Differential Operators (RID)

Rotationally symmetric operators have several attrac-
tive features. Two of the most widely used operators of
this class are the Laplacian (Vz, which is linear) and the
second directional derivative along the gradient (3°/dn?),
which is nonlinear. We will derive in this section several
properties of the two derivatives and especially of their
zero crossings. In particular, we derive necessary and suf-
ficient conditions on image intensities for the zero-cross-
ings of the two derivatives to coincide.

1) Null Space of the Laplacian and Subharmonic Func-
tions: Certain classes of functions do not originate zero-
crossings in the Laplacian: they are harmonic and sub-
harmonic functions. Harmonic functions are the null space
of the Laplacian operator. Interestingly, they are invariant
with respect to heat diffusion and therefore do not change
under convolution with a Gaussian of any size (Yuille,
personal communication). This property, however, is not
stable. Another nontrivial result is that any nonlinear
function ¢ of an harmonic function has zero-crossings at
the locations of the inflection points of ¢ (Yuille, Poggio,
and Ullman, personal communication). Harmonic func-
tions are nongeneric in the sense that a small perturbation
destroys the harmonic property.

Subharmonic functions are such functions that the mod-
ulus of their Laplacian is everywhere positive [17]. These
functions are robust against small perturbations.

2) Cartesian and Polar Form: We just give the ex-
plicit representation of the two operators in cartesian and
polar coordinates: )

Ffo1ef 13
e _of 1of 19f
Vf__fxx.;.fyy..apz+pap+pzao 4.1
Ff _ i+ Uhiy + ik
on? f§+f§

_Eéféfjﬁ”_+i<éff>2ﬁ

= 10290 00 3006 »* \36) 367

1 of

p’ dp

1
+ —_—
dp 2 \o6

3A\2
() *
0
4.2)

We also give the explicit representation for the second
directional derivative in the direction orthogonal to the
gradient:

az)z 21} !
dp) 9p> <6f>2 (a_f>2'

B _ [ifu = 2y + [ihy
n? 2+ 1

4.3)



TORRE AND POGGIO: ON EDGE DETECTION

The representation in polar coordinates shows clearly that
the two operators are rotationally symmetric, since their
form does not change for a rotation of the coordinate sys-
tem 0*. We can now state:

e Characteristic Property of Rotationally Symmetric
Operators: A sufficient condition for an operator to be
rotationally invariant is that § appears only as derivative
in the polar representation of the operator.

3) Simple Properties of v? and 3*/dn?: Marr and Hil-
dreth [33] attempted to prove that in most cases the zero-
crossings of the Laplacian coincide with the intensity
edges. Since zeros of the second directional derivative
along the intensity gradient are the natural definition of
intensity edges, we are able to give here a more rigorous
characterization of the problem, in terms of simple
properties.

Property I: If the image f(x, y) can be represented as a
function of only one variable, i.e., f(x, Y), the two op-
ergtors v? and 3*/dn? are equivalent, i.e., (@*/on? f =
VY.

As a consequence, for f(x, yo) the zeros of 0%*f/on* and
of V?*f coincide.

Property I is similar but not identical to the ‘‘linear
variation’’ result of [33] which states that if f changes at
mcz)st linearly along the edge direction [, then Vi = 0%
al*.

Property II: If f(x, y) = f(p) is rotationally symmetric,
V2fand 8°f/dn’ differ by the additive term (1/p) (3f/9p)

For circularly symmetric functions, the zeros of Vfare
farther apart than the zeros of 8%f/an®. This lack of local-
ization by V? (for circularly symmetric patterns) can also
be seen in the fact that zeros of V2 (but not of 8%/0n?)
“‘swing wide’’ of comners.

Property III: a) 3*/0n® is nonlinear.

b) 9%/0n? neither commutes nor associates with the con-
volution, i.e.,

0* 3
51—2(8 *f) # <5P8> *f “4.4)

& il
<5;;zg> *f#Egxo ) (4.5)

¢) 3*/9n? is a linear operator on f, if f = f(p), but not
shift invariant.

d) The mean of 9%/dn? applied to a zero-mean function
need not to be zero.

4) Geometric Characterization of the Zeros of V? and
9%/0n?: Tt is interesting to consider under which condi-
tions the zeros of the Laplacian coincide with the zeros of
the second directional derivative along the gradient. Ze-

ros of the second directional derivative along the gradient’

are a natural way of characterizing and localizing inten-
sity edges. Zeros of the Laplacian, however, are exten-
sively used for their computational convenience. In this
section we derive rigorous results that clarify completely
this set of questions.

Let us consider the intensity surface represented as X
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= (x, y, z), where z = f(x, y) with fe C'(D), D C ®R?
and r > 2.
The mean curvature of the surface X is

+ GL — 2FM
H=EN G2

2g (4.6)
_ U+ Dy + A+ ) fu = 2hhSy
28° ’
where
E=1+f F=ff G=1+f,, &7

are the coefficients of the first fundamental form I(dx, dy)
[30], [41], and

by

A Y
8

8 8
withg? = 1 + f2 + fﬁ, are the coefficients of the second

fundamental form II(dx, dy). We use (4.2), (4.3), and
(4.8) and the property

L= 4.7

5 ? &
Vfi=l|l—s+= .
f <an2 e >f *.9)
for writing H in terms of V2% and 9*/on*:
1 292 , Of
=— g VS = (V)Y —) .
20 <8 f= O 55 (4.10)

We can now characterize the connection between the ze-
ros of V2 and the zeros of %/dn” f.

Property IV: If Vf # 0, the zeros of (3°/dn”) f coin-
cide with the zeros of V2 iff the mean curvature H is zero.

Thus, only for surfaces with minimal curvature (H =
0), the zeros of 3°f/dn’ coincide with the zeros of V*f
where the gradient of f is different from zero. Note that
(M. Kass, personal communication) Vf has the same ze-
ros as 62f/an2 where the curvature of the lines of level-
crossings of the intensity image is zero. Recently, Berzins
[7] analyzed in detail the behavior of zeros of the Lapla-
cian of a Gaussian filtered image around corner edges and
edges with high curvature. He showed that the zeros of
the Laplacian are displaced from the true edge by less
than ¢ (the variance of the Gaussian filtering) when the
radius of curvature is large compared to o, and when the
distance to the nearest sharp corner is large compared to
©/c (where O is the angle of the corner in radians). Note
that (4.10) shows that the difference between 8*f/on* and
V2fis small if the mean curvature H is small. Smoothing
the image with a two-dimensional filter reduces the cur-
vature (and more so for larger-sized filters). Therefore,
we may expect that in filtered images, Vf will perform
almost as well as 8°f/on”.

5) The Normal Curvature: The second directional de-
rivative along the gradient has a simple interpretation in
terms of the normal curvature along the gradient. The nor-
mal curvature K, in the direction of the gradient is [30]

_ Ld® + 2Mdudv + Ndv*
" " Edu® + 2Fdudv + Gdv*

4.11)
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with du and dv as direction numbers. Setting du® + dv*
= 1, the direction numbers along the gradient are

du = 4.12

“ = A @12
5

dv = ——. 4.13

ST @13

Thus, (4.11) and (4.13), together with (4.6) and (4.7),
lead to

4.14)

In particular, it follows
Property V: The second directional derivative along
the gradient and the normal curvature in the direction of
the gradient have the same zeros when |Vf| # 0.

The geometrical characterization of the gradient and the
second derivative along the gradient is completed by the
analysis of the geodesic curvature of the curve directed
along the gradient: For surfaces of revolution the geo-
desic curvature of such lines is always zero [53].

The operator 3°/dn” and the normal curvature in the di-
rection of the gradient K, are not defined when |Vf| = 0.
In this case, the direction of the gradient is underdeter-
mined, although the Hessian can of course be diagonal-
ized (determining the principal directions). Thus, 3*/9n
has the disadvantage with respect to V* that it is not de-
fined everywhere.

6) Potential Biological Consequences: A natural ques-
tion arising from these comparisons is: which derivative
operators are used by the human visual system? It is ob-
vious from the earlier sections that several different deriv-
atives possibly at different scales have to be used for ef-
ficient edge detection. It would be very strange if the
human visual system would make use of only one differ-
ential operator. The important question is therefore which
operators, or combinations of, are used in different visual
tasks and under different conditions. Zero-crossings in the
output of directional second derivatives approximated by
the difference of one-dimensional Gaussians (DOG) were
suggested by [34] in a theory of stereo matching. Marr
and Hildreth [33] later proposed the rotationally symmet-

ric Laplacian VG (approximated by a rotationally sym-

metric DOG) for edge detection and for stereo matching.
Psychophysical evidence does not rule out either of these
schemes. Physiology shows that a class of retinal gan-
glion cells performs a roughly linear operation quite sim-
ilar to the convolution of the image with the Laplacian of
a Gaussian. Data on cortical cells are still somewhat con-
tradictory on whether some simple cells may perform the
equivalent of a linear directional derivative operation, or
instead, signal the presence of a zero-crossing of the ro-
tationally symmetric V>G.

On physiological grounds, it seems unlikely that retinal
cells could perform the rotationally symmetric nonlinear
0%/dn* operation, although not all classes of ganglion cells
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have been tested properly to allow a firm conclusion. In
particular, one-dimensional and rotationally symmetric
patterns are customarily used as stimuli for physiological
experiments. In the first case 3°/dn® and V* are equiva-
lent, whereas in the second case, they may be distinguish-
able only quantitatively. Let us now consider three classes
of psychophysical experiments.

1) An interesting possibility for distinguishing the La-
placian from the directional second derivative on the basis
of physiological or psychophysical experiments is sug-
gested by the observation that the zero-crossings of the
Laplacian ‘‘swing wide’’ of gray-level corners. In partic-
ular, the zero-crossings associated with an elongated black
bar, for example, coincide for V? and 8*/n*, whereas they
differ in the case of a circular black disk. Hyperacuity
experiments may allow one to distinguish the two cases.
Notice that both operators are linear in this case. They
associate, therefore, with Gaussian convolution (G =
e~ The corresponding point-spread functions are

a) for the one-dimensional, f(x):

9 1 /X 2y
ﬁG=;§<?—l>e“/2z 4.15)
2). for the two-dimensional f(p)
2 [ p° )
VG = 5 <2"72 - 1> Pt 4.16)
G 1 [p* e
W=?<?——l e”/z (417)

where o is the standard deviation of the Gaussian func-
tion. Let us call w the diameter of the central region of
these masks, i.e., the distance between the central zeros.
w)p denotes the diameter for the one-dimensional case and
wsp for the two-dimensional case. It is easy to see that the
second directional derivative has w{p = w4, whereas this
is not true for the Laplacian w), # whp. From a) and b)
we get

W[{D = WIID =20
2320

A possible psychophysical test is

® If zero-crossings in the Laplacian are used by our
visual system to estimate position of edges, the apparent
width of a narrow 1-D bar and of a small circle (with
equal physical widths) should be different—the bar should
appear smaller. This is not expected if the second direc-
tional derivative is used.

2) There are classes of intensity edges that generate ze-
ros in 8*/0n but not in V2. An example is given by:

d
Wap =

4.18)

I
Wop =

a

Ix,y) = (1 + &™)

5 o= (4.19)
which, with appropriate values of 8 does not satisfy V*/
= 0 forany y = 0. It is possible, however, to find solu-
tions to (8°/dn?) I = 0. Thus, the edge [ could again be
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usez:d to discriminate psychophysically between V> and 3%/
on”.

More in general, functions 4 € C? in a certain region D
such that VA = 0 in D are called subharmonic, as we
discussed earlier. These functions do not have zero-cross-
ings of the Laplacian [17], but generally zero-crossings
of 8*/0n* are present. There are special cases, however,
in which both 8*/dn* and V* do not have zeros. An ex-
ample is given by f(x) = cos x + bx* with V*f = (8%/dn?)
f = —cos® x + 2b, which does not have any zero-cross-
ings if b > 1. It would be interesting to test this kind of
pattern both psychophysically and physiologically (con-
trolling carefully for nonlinearities in the phototransduc-
tion).

3) As we mentioned earlier in this section, harmonic
functions cannot be characterized in terms of the zero-
crossings of their Laplacian. Worse yet, any image is
characterized uniquely by zero-crossings of the Laplacian
(across Gaussian scales, see Section VI) modulus any har-
monic function. Psychophysical experiments that mea-
sure the detectability of edges in subharmonic patterns are
difficult to interpret, because they would give a clear an-
swer only if the Laplacian were the only differential op-
erator in the human visual system, a very unlikely possi-
bility. Furthermore, harmonic functions are unstable
against small perturbations, making difficult to control for
nonlinearities in the display and in the transduction pro-
cess.

V. GEOMETRICAL PROPERTIES OF EDGE CONTOURS

In this section, we will discuss geometrical properties
of edge contours obtained by different methods. We will
show that edges derived through rotational operators are
generally smooth, closed curves, while edges obtained
with directional operators do not have such special geo-
metrical properties.

In many edge-detection schemes, as we discussed in the
Introduction, the image I(x, y) is first filtered and then a
second-order differential operator D? is applied to the fil-
tered image [(x, y). Edges are identified in correspon-
dence to the zero-crossings of D*[(x, y). In other cases,
edges are identified as extrema of some derivative of the
filtered image. Again, they may correspond to zero-cross-
ings of a higher order derivative. In this way, the first part
of edge detection provides a compact and possibly com-
plete representation of intensity changes (see Section VI).

Therefore, it is important to analyze theoretically geo-
metrical properties of the locus of points defined by

Di(x, y) = 0, (5.1
where I(x, y) is the filtered image and D? can be an RID
or a DD operator. We first recall in the next two sections
the notions of transversality [1], [42] and of Morse func-
tions [1]. In Section V-D we will classify the types of
zero-crossings contours that can appear in images.
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A. Transversality and Zero Crossing (ZC)

A curve (or a surface) S, meets a curve (or a surface)
S, in P transversally when the tangent space TS; to S in
P and the tangent space T, to S, in P have locally around
P an empty intersection. More generally, two subspaces
U, Vof ®" are transverse if they meet in a subspace whose
dimension is as small as possible. From this definition, it
follows that the surface Sy = (x, y, f(x, y)) meets the
surface S, = (x, y, 0) in P = (%, ¥, 0) transversally if in
&, 9

|grad f| # 0. (5.2)

The isotopy theorem [S0] shows that transversal inter-
sections are structurally stable. The converse is also true
in that nontransversal intersections are structurally un-
stable. Transversality (and the implicit function theorem)
indicates that if Sy meets S, transversally in P, then the
intersection of Syand §, around P is a smooth curve.

The previous result is only local. Globally we find that
if f(x, y) is defined in the compact domain V € R* whose
boundary is 6V and if Sy always meets S, transversally,
then the intersection of Sy and S, consists of:

a) smooth closed curves I'. € V,

b) smooth curves T, that terminate in V.

In other words, transversality of zero-crossings means that
zero-crossing contours are closed curves or curves that
terminate at the boundary of the image.

B. Closed and Open Contours of ZC

From the previous section a necessary and sufficient
condition for transversality in p is

|grad D*I(x, wip # 0. (5.3)

A preliminary condition required by (5.3) is that D*f(x,
y) is a differentiable function. This condition is obviously
met if /(x, y) is analytic (in particular, entire or bandlim-
ited). But we have already stressed that it is safer to sup-
pose that the original image /(x, y) is a piecewise contin-
uous function or belongs to C", with n not known a priori.
If we filter the original image I(x, y) with an appropriate
rotational filter, then I(x, y) is analytic both in x and y,
and D*I(x, y) = 0 defines a differentiable function. On the
other hand, if we use a directional filter f, for example
along x, we have

I(x, y) = I(x, y) * f(x) (5.4
and there is no reason for J(x, y) to be a three times dif-
ferentiable function of y. Therefore, if the original image
has been filtered with a directional operator only, it is pos-
sible that the zero crossings of D*f(x, y) may not be
smooth curves. In principle, however, diffraction-limited
optics always guarantees analyticity of I(x, v).

C. Morse Functions

A function f: R* — R is called a Morse function if at its
critical point (i.e., points where grad f = 0), the Hessian
is nondegenerate. Morse functions have the following
properties.
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1) Suppose that f(£, §) = 0 and |grad f|; = 0 with P
= (X, §), but the Hess ( f)p is nondegenerate. Thus, there
is a smooth local change of coordinates around P such that
S takes the exact form

19%
2 9x?

%

azf
2
X+ — xy - <

2
. (5.5
; oxdy y. (.5

fe, y) =

P

2) A small enough perturbation of a Morse function f
can always be expressed in the same form as the original
fby a change of coordinates and of scale.

Property 1) says that around P the function f has the
behavior of the quadratic form induced by the Hessian.
Property 2) is a kind of structural stability property. Morse
functions are dense so that, if f is a non-Morse function,
then an arbitrarily small perturbation of f makes fa Morse
function (obviously the perturbation must not vanish at
the critical points). This is the reason of the importance
of Morse functions here: we can always assume that im-
ages are Morse functions (especially because of the un-
avoidable noise).

D. Classification of ZC

We now analyze the geometrical properties of the ZC
contours, i.e., the locus of points defined by

D(x, y) = h(x, y) = 0. 5.7

1) If h(x, y) is not a smooth function of x and y (at least
C'), the implicit function theorem cannot be used and the
ZC may be isolated points, i.e., segments of intersecting
curves and 2-D regions.

2) If h(x, y) is a smooth function of x and y and if in P
= (£, ¥) we have

h(®, ) =0
then A(x, y) has in P a ‘‘transversal zero crossing,’” which

is a smooth curve. i
3) If h(x, y) is a smooth function and in P we have

and |grad A(x, y)|p # O,

h(£,9) =0 and |grad h(x, y)s| =0 (5.8)

but around 2, h(x, y) we find
hx,y) = ax* + bxy + ¢y* + O(x", y™ n+m=3,
(5.9

where a = %f:rxlpa b = f:vyllsa c=
ing P is

a) an elliptic ZC, if Hess A(x, y)|s > 0 (see Fig. 3),

b) ahyperbolic ZC (saddle point) if Hess h(x, y)|p <
0 (see Fig. 3),

¢) a parabolic ZC, if Hess h(x, y)|s = 0 but a, b, and
¢ are not identical to zero (see Fig. 3).

4) If h(x, y) is a smooth function and if in P we have

h(x, 9) = 0, |grad f(x, y)|s = O,
and in P h(x, y) depends on the third-order terms,

3 fylp. The zero cross-

h(x, y) = ax’ + Bx2y + gxy2 + 6y3

+ 0", y"), n+m=4, (510
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(a) (b)

© @

© ®
Fig. 3. The zero-crossing points may be of the following types. (a) Ellip-
tic. (b) Hyperbolic. (c) Parabolic. The zero-crossing lines may be of the
following types. (d) Elliptic umbilic. (¢) Hyperbolic umbilic. (f) Para-
bolic umbilic.

where the coefficients «, 8, j, and 6 are obtained by the
Taylor expansion. It is easy to see that the set of points

Riy={x,y):ax + By + yx? + 6 =0} (5.11)

are straight lines. The ZC lines may be

a) an elliptic umbilic, if R, consists of three lines [see
Fig. 2(d)],

b) a hyperbolic umbilic, if R, consists of a single real
line [see Fig. 2(e)],

¢) a parabolic umbilic, if R, consists of three lines,
two of which are coincident [see Fig. 2(f)],

d) a symbolic umbilic, if R, consists of three coin-
cident lines.

5) If h(x, y) is a smooth function and in P we have

h(£, $) =0
and in P, h(x, y) depends on the fourth-order terms, the
ZC lines have a complex shape that can be analyzed using
results of [42].

Bifurcations of Zero Crossings: The isotopy theorem
[50], [1] shows that transversal intersections are structur-
ally stable, i.e., that ‘‘transversal zero-crossings’’ are
structurally stable: their topological properties do not
change if the size (and thus the scale) of the filter is
slightly changed.

If f(x, y) is a Morse function then Sy may meet S, non-
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Fig. 4. The two types of bifurcations that can occur for increusing and

decreasing o in the case of Morse functions. (a) Left to right. (b) Right
to left.

transverally, and these intersections are not structurally
stable (observe that Morse functions are structurally sta-
ble but not their intersections with S,). If f is a Morse
function, then Sy may meet S, nontransversally at elliptic
points and hyperbolic points. These intersections are not
structurally stable and may change their topological prop-
erties for small perturbations of f. More specifically, we
may have two bifurcations:

a) Elliptic ZC: At elliptic ZC, a small perturbation
of f may lead to the disappearance of the ZC or to the
appearance of a contour of ZC constituted by a closed
curve.

b) Hyperbolic ZC: At hyperbolic ZC, which con-
sists of the intersection of two curves, any small pertur-
bation leads to the breaking of the intersection of the two
curves and the appearance of two disjoint curves.

These are the two bifurcations that may appear when
h(x, y) is a Morse function. Interestingly enough, the zero-
crossing contours obtained with real images (which will
be explored in a later paper) can be classified as type 2)
and 3) of the previous section; Morse functions can have
ZC only of type 3) and 4). The two types of bifurcation
that may originate with Morse functions are illustrated in
Fig. 3(a) and 3(b), respectively (see also [27]). Yuille and
Poggio [56], [57] have shown that (if Gaussian filtering
is used) when the scale of the filter is changed (i.e., o),
the second type of bifurcation may appear either when o
is increased or decreased, but the first type of bifurcation
only occurs when o is increased. Thus, the Gaussian filter
forbids creation of a zero-crossing contour from an ellip-
tic ZC for increasing o. It is important to note that all
these topological properties are also valid for level cross-
ings. Thus, setting a threshold in the output of the filtering
and derivative operation preserves all topological and geo-
metrical properties of zero crossings.

In summary, we have characterized the geometrical
properties of zero-crossing contours; these properties—for
instance the fact that zero-crossing contours are closed—
may be exploited in various ways in edge detection and
even in stereo or motion matching.
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VI. EpGE CONTOURS AND FILTER SCALE

As we have seen, differential operations on sampled im-
ages require the image to be first smoothed by filtering.
The filtering operation introduces an arbitrary parame-
ter—the scale of the filter, e.g., the standard deviation for
the Gaussian filter. In computer vision, the advantages of
using several scales of filtering was realized quite early
on, and this was supported by evidence suggesting the
presence of filters of several sizes in the human visual
system [33], [34], [43]. More recently, Witkin [55] intro-
duced a scale-space description of zero crossings which
gives the position of the zero crossing across a continuum
of scales, i.e., sizes of the Gaussian filter (parametrized
by the o of the Gaussian). The signal—or the result of
applying to the signal a linear (differential) operator—is
convolved with a Gaussian filter over a continuum of sizes
of the filter. Zero or level crossings of the filtered signal
are contours on the x-o plane and surfaces in the x, y, ¢
space. Witkin proposed that this concise map can be ef-
fectively used to obtain a rich and qualitative description
of the signal. Yuille and Poggio [56], [57]—who called
the maps of zero-crossings across scales fingerprints—have
established interesting relationships between multireso-
lution analysis, the Gaussian filter and zero-crossings of
filtered signals. Their main results are two theorems:

1) Zero and level crossings of an image filtered through
a Gaussian filter have nice scaling properties, i.e., a sim-
ple behavior of zero crossings across scales. Zero cross-
ings are not created as the scale increases. The Gaussian
filter is the only filter that has this nice scaling behavior
(see also [6]).

2) The map of the zero crossings across scales deter-
mines the filtered signal uniquely for almost all signals in
the absence of noise. The scale map obtained by Gaussian
filters is thus a complete representation of the image. This
result applies to level crossings of any arbitrary linear dif-
ferential operator of the Gaussian (modulus the null space
of the differential operator and provided there are at least
two zero-crossing contours), since it applies to functions
that obey the diffusion equation.

The first result sheds some light on the properties of
zero crossings and level crossings at different scales with
the Gaussian filter. It supports the use of the Gaussian
filter in a multiresolution edge-detection scheme. Recon-
struction of the signal is, of course, not the goal of early
signal processing. Symbolic primitives must be extracted
from the signals and used for later processing. The second
result implies that scale-space fingerprints are complete
primitives that capture the whole information in the signal
and characterize it uniquely. Subsequent processes can
therefore work on this more compact representation in-
stead of the original signal [4].

The second theorem has theoretical interest in that it
answers the question of what information is conveyed by
the edges identified with zero- and level-crossings of mul-
tiscale Gaussian filtered signals. It is, furthermore, inter-
esting that this complete representation happens to coin-
cide with the basic scheme for edge detection discussed
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in this paper. Very recently, Curtis [15] has shown that
under some conditions, zero-crossings at just one scale
are a complete representation of the image.

It may be asked at this point what the right sequence is
for the two steps of differentiation and filtering. For linear
operators, the order is of course immaterial since they
commute. It is not so for nonlinear operators, such as the
directional derivative along the gradient. The regulariza-
tion argument for the filtering step implies that filtering at
one scale must precede the differentiation operation. The
computation of different scales requires filtering at a range
of resolutions after differentiation. The reason is that the
theorems of Yuille and Poggio [56], [57] hold true even
for the identity operator, but are not necessarily valid if
filtering is performed before a nomlinear differential op-
eration. In particular, Gaussian scaling after the nonlinear
directional derivative along the gradient does not have a
nice scaling behavior. Thus, filtering as a regularizing op-
erator must be performed first at one scale and filtering at
different scales must be performed after the differential
operation. For linear differential operators, this is equiv-
alent to a multiscale filtering either before, after, or to-
gether with the differential operation (e.g., the Laplacian
of the Gaussian).

VII. OVERVIEW OF SOME EDGE DETECTORS

In this section, we will briefly compare our main con-
clusions with several edge detectors presented in the lit-
erature. Our review is neither intended to be exhaustive
nor does it aim to present edge detectors in full detail.

A. Difference of Boxes (DOB)

Binford and coworkers [8], [24], [26] have suggested
the use of support-limited filters in the filtering step of
edge detection. They have used the Haar function (3.8b)
in directional filtering or a difference of functions of the
type (3.8a) for rotational filtering. There are two prob-
lems using this approach.

1) Filtering with support-limited functions does not reg-
ularize the image intensity profile; therefore the use of
any differential operator is unsafe.

2) A strictly support-limited filter, such as a DOB, can-
not be correctly sampled, and it is difficult to obtain a
good digital representation.

B. Shanmugam, Dickey, and Green

Shanmugam, Dickey, and Green [47] looked for a lin-
ear band-limited operator that would yield maximal out-
put energy within a given spatial interval in the vicinity
of the edge. No explicit reference was made to a differ-
entiation step in edge detection. They proposed that the
optimal filter for an ideal edge S(x), has a Fourier trans-
form

wx,
Fop) = k1w¢1<—9‘, C> 1] =
0 Q| > r,

(7.1)
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where k, is a constant, ¥ (x, ¢) is a linear prolate function
(see Section III-A). This edge detector performs very
poorly on localization and has the intrinsic feature of giv-
ing two maxima of energy in the output of the response
to an edge. The reason is simply that using an even filter
such as (7.1) which has the same shape of w ¢0 (wxo/Q,

c), edges are located at the zero crossing of the output and
not at the extrema. Moreover, these authors use properties
of linear prolate functions [47, eq. 1] to derive their op-
timal filter which are valid in 1-D, but not in 2-D when
linear prolate functions are extended by rotation. In ad-
dition, their asymptotic approximation to the optimal fil-
ter was incorrect, as shown by Lunscher [32].

C. Marr and Hildreth

Marr and Hildreth [33], and Hildreth [25], extending
the work of Marr and Poggio [34], have proposed an edge
detection scheme based on a filtering step consisting of a
2-D symmetric Gaussmn followed by the localization of
zero-crossings of V2i(x, y) where I(x y) is the filtered im-
age. This edge detector performs rather well, but its op-
timality was not rigorously proved. Indeed,

1) 8*/0n* in many instances achieves a better localiza-
tion than V2, particularly for rounded edges with large
curvature.

2) The use of directional filters and directional deriv-
atives when performed correctly does not give rise to the
problems that forced Marr and Hildreth to reject such edge
detection schemes (see Section IV-A). The use of two di-
rectional filters with directional derivatives may be as ef-
ficient as the Marr—Hildreth scheme, with the advantage
of not introducing spurious edges that appear with rota-
tional filtering because of the closure property of ZC con-
tours (see Section V).

D. Haralick

Haralick [20]-[22] has proposed a scheme for edge de-
tection in which a pixel is marked as a step edge pixel if,
in its neighborhood, there is a zero crossing of the second
directional derivative taken in the direction of the gra-
dient. Haralick, in order to evaluate the derivatives he
approximates, interpolates the sampled intensity values
with discrete Chebychev polynomials. There is no ex-
plicit mention of a filtering step. Canny [13], however,
has shown that the above procedure is practically equiv-
alent to using a filtering step (in our terms, a regulariza-
tion step) before differentiation. The type of equivalent
filter depends on the set of approximating functions and
on the degree of differentiation required.

E. Canny

Canny [13] has investigated the desirable properties of
an optimal edge detector, based on efficiency of detection
and reliability in localization. We have already seen that
detection of an ideal step edge is favored by broad filters
while localization is favored by small filters. Canny has
shown through variational methods that the optimal odd
filter f,,(x) (according to his criteria) in the 1-D case is
the linear combination of four exponentials.
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Interestingly, f,,(x) is very close to xe % which is
the optimal odd filter from the point of view of minimal
uncertainty. The treatment of Canny may also be seen as
a well-founded justification for the use of filters with min-
imal uncertainty, because simply by first changing some
constraints in his variational approach it is possible to ob-
tain the Hermite function of order two. In addition, f,,(x)
is very close to the derivative of the regularization filter
derived in [40].% Canny’s procedure for finding two-di-
mensional step edges and other types of edges uses direc-
tional operators of varying width, length and orientation.
This procedure, which includes as an essential part an ap-
propriate thresholding, works remarkably well on real im-
ages. His justification of the choice of directional opera-
tors is not completely satisfactory. Indeed,

1) for 2-D images, Canny uses two alternative differ-
ential operators, either 8°/dn* (see Section IV-B and Ha-
vens and Strickwerda, personal communication) or direc-
tional operators. The preference for directional operators
originates from his one-dimensional treatment of the
problem. The optimal filter is chosen to be an antisym-
metric function, because it is designed to detect maxima.
Therefore, the corresponding 2-D operator is not rotation-
ally invariant, suggesting the use of directional operators
for 2-D images. The output of directional operators can
be directly used in the adaptive threshold scheme used by
Canny, offering advantages with respect to the symmetric
operator 9%/ on’.

2) As already mentioned in Section IV-A, to obtain all
edges in a 2-D image it is sufficient to use only two dif-
ferent directional derivatives. The use of more than two
orientations is useful only to increase the signal-to-noise
ratio, but is not required for edge detection in a noise-free
2-D image.

VIII. DiscussioN

We will now summarize the main points of our analysis
of edge detection.

1) The first step in edge detection, after sampling of
the image, consists of a filtering stage followed by a dif-
ferentiation stage. Filtering has the main function of reg-
ularizing the ill-posed nature of edge-detection and should
be performed before the differentiation operation. Filter-
ing for the purpose of multiresolution analysis should be
performed after the differentiation operation, when non-
linear differential operators are used.

2) To be physically realizable, digital filters should be
represented by a finite sequence of samples of points.
From this point of view, a Gaussian or the first linear pro-
late (¢y(x, ¢)) function are practically equivalent. Filter-
ing with prolate functions regularize ‘‘more’’ the image
(the image becomes entire and band-limited), whereas
using a Gaussian, the image becomes only entire. The
Gaussian filtering, however, has two advantages over
prolate functions:

a) it does not create ZC when the size of the filter is
increased (see Section VI);

ZRecently Spacek and Brady have investigated split-gaussian filters sim-
ilar to Canny’s but with poorer signal-to-noise ratio and better localization.
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b) in 2-D, the Gaussian decomposes into the product
of 1-D Gaussians. As a consequence, it is particularly easy
to reduce drastically the amount of computations involved
in its use.

3) Filtering of the image with a rotationally symmetric
filter insures with high probability the closure of ZC con-
tours (see Section V). Filtering the image with directional
filters does not ensure closed ZC contours. Localization,
however, is more accurate.

4) Several types of derivatives at different scales may
be needed for detecting and labeling intensity changes un-
der the most general conditions. In the differentiation step,
directional derivatives in only two directions are neces-
sary, when DD operators are used. When RID operators
are used, 9%/9n* performs better than V2 in localization,
but 9*/0n* has the disadvantage of not commuting with
the convolution.

5) In order to characterize the types of intensity changes
in the image in terms of the physical properties that have
originated them, it is useful to have a set of hierarchical
symbolic descriptions. The lowest symbolic description
uses the associated fingerprints of the image, containing
the map of zero crossings and their slope at different
scales, and provides a local labeling of edges in terms of
image data. The final symbolic description must label
edges in terms of the properties of the physical surfaces
that originate the intensity changes, and therefore as ob-
ject boundaries, shadows, changes in albedo, specular re-
flections, etc. This final representation is obtained using
high-level knowledge and geometrical reasoning from
lower symbolic descriptions.

In later papers, we will evaluate performance of differ-
ent filters and different operators in real images, and we
will outline a theory of a symbolic description of edges.

APPENDIX A
DIFFERENTIATION THROUGH TAYLOR EXPANSION

In previous sections, we have seen that to safely per-
form differentiation, it is necessary to smooth the data by
some appropriate (analog or digital) filtering. If this fil-
tering has removed enough high frequencies, so that our
filtered image is a band-limited function, and by the
Paley-Wiener theorem [10] is also an entire function (see
Section III), numerical differentiation can be performed
in a computationally more efficient way through Taylor
expansion.

If f(x) is entire, then its Taylor series

fO =fi+ @ —x)fi +, 0,

x —x) (n)
+T—fk 0,

(AD)

has an infinite radius of convergence. If we have 2n + 1

sampled points, we can obtain 2n linear equations

from which we can solve for f’, j = 1,2, - - -, 2n.
Three equidistant points give
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1
fe = " (fes1 — fi=1)
n

1
£ = 7 (fem1 = 2fc + fird) (A2)

With five equidistant points, we obtain

1
fi = T (ia = 8t + 8 = fid)
1
(= g (T2 + 166y = 30 + 16t — fird)

(A3),

When the performances of the numerical differentiation
obtained through spline interpolation (2.9), (2.10) are
compared to those obtained by Taylor expansion [(A2),
(A3)], it turns out that the first method gives more accu-
rate and consistent results with noisy data while the sec-
ond method is more efficient with data that are already
smooth.

APPENDIX B
SAMPLING

Since image processing is performed in terms of dis-
crete representations of signals and filters, it is important
that manipulations of sampled images and filters have a
meaningful connection with the original image /(x) and
the analytic form of the filter f(x). More precisely, for
linear filtering, if /; is a discrete sequence of points of /(x),
and f; is another discrete sequence of points of f(x), the
discrete convolution

8= 2k " fiui (B1)

should be related to the exact convolution

g) = S 1) f(y = x) dy = I(x) * f(x).  (B2)

This relation is clarified by standard results [12], [37].
Suppose that we may represent /(x) and f(x) as

I(x) = 23 L¢y(x) (B3a)
flx) = f@ﬁ@(x) (B3b)

where ¢;(x) = sinc [w/h(x — ih)]. Then
I(x) * f(x) = glx) = ,Z gii), (B4)

where g; = LIy fii-

Thus, from the discrete convolution of the sampled val-
ues (B2), it is possible to recover completely, the exact
convolution of the original image with the filter. It is now
possible to represent a signal in the form of (B1) when the
signal is bandlimited and correctly sampled. If one uses
band-limited filters it is possible to obtain the required
representation (B3b) for the filter. For an arbitrarily sam-
pled image, however, it is difficult to obtain the required
representation (B3a). Indeed, it would be necessary to
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sample the image according to the cutoff frequency of the
optical system used in the imaging process, which is gen-
erally too high to be of practical use. This is related to the
classical problem of aliasing. The simplest way to obtain
a reasonable solution to the problem is to initially filter
the image with an appropriate band-limited filter, before
any further operation.
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