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Abstract

In a preceding paper, Poggio and Reichardt (1973a), a phe-
nomenological theory describing the visual orientation behaviour
of fixed flying flies (Musca domesrica) towards elementary patterns
was presented. Some of the problems raised in this first paper are
treated here in more detail. The mapping between the position
dependent torque distribution - D(tp)characteristics - associated
with a given pattern and the stationary orientation distribution
p(tp), is studied taking into account that the fluctuation process
(generated by the fly) is coloured gaussian noise. Under certain
critical conditions this may lead to an "early symmetry breaking"
in the mean values of the p(tp) distribution. The validity of the
"superposition principle" has also been examined. Although shift
and superposition give the main qualitative features of the "attrac-
tiveness profile" D(tp~ associated with a 2-stripe pattern, superposi-
tion does not hold quantitatively for stripe separations up to about
80°. Evidence is presented suggesting that such an effect is due to
inhibitory interactions between input channels of the fly's eye.
Implications of this finding with respect to the problem of spon-
taneous pattern preference are also discussed.

Introduction

In the two preceding papers, Reichardt (1973),
Poggio and Reichardt (1973a), we have investigated
the visual orientation behaviour of fixed flying flies
( Musca domestica) under the condition of one dynamic
degree of freedom: the rotation of the fly around its
vertical axis. In the first paper a sequence of experimen-
tal results was presented which in turn led to a theo-
retical treatment, published in the second paper. The
theory is entirely based on quantitative behavioural
results and therefore is a phenomenological descrip-
tion whose logical role can be compared with a thermo-
dynamic approach in physics. In order to bridge the
gap between the phenomenological level and the
underlying nervous mechanisms, a conceptual frame-
work dealing with the functional properties of these
mechanisms was developed in a third paper, Poggio
and Reichardt (1973b). This framework is the next

logical step in the analysis since it takes into con-
sideration the interaction processes between the
signals from individual light receptors.

The purpose of the present investigation is to
examine in more detail some of the problems outlined
in the second paper, Poggio and Reichardt (1973a),
from both the experimental and the theoretical points
of view - always at the phenomenological level. There
are essentially two problems:

a) The phenomenological equations, linking the
pattern induced flight torque response with the fly's
orientation behaviour, have so far only been applied
to those orientation tasks which allow a linearization
of the equations. However, in our theoretical con-
siderations .we also took into account the nonlinear
part of the problem, under the simplifying assumption
that the torque fluctuation N(t), generated by the fly,
can be approximated by gaussian white noise. A
quantitative comparison between experiments and
theoretical predictions, using the actual properties
of N(t), is made in this paper. As mentioned in the
first paper, our theory can also be applied to tracking
situations. Experimental evidence in agreement with
the theoretical predictions is presented here for a
simple tracking task.

b) Earlier experiments, Reichardt (1973),have sug-
gested that the orientation behaviour of the fly towards
a panorama, consisting of a collection of elementary
objects, such as vertically oriented stripes or stripe
segments, can be derived from the superposition of
the responses elicited by each object independently.
These suggestions are examined in more detail in this
paper and lead to some new insights into the functional
properties of the underlying mechanisms.

The conceptions and the experimental methods
are the same as described before, Reichardt (1973)
and Poggio and Reichardt (1973a).
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The Mappingof the Potential-Distributions
into the Flight-OrientationDistributions

Before turning to the experiments, we would like
to recall the phenomenological description of the
orientation behaviour, originally outlined in Poggio
and Reichardt (1973a). The equation for the rotatory
degree of freedom tp(t) reads

ev;(t) + ktiJ(t)= N(t) - F {tp(t), tiJ(t)} .

The left side of Eq. (1) represents an approximation
to the dynamics of free flight, whereas the right side
consists of two terms: the torque fluctuation N(t) and
the optomotor response F, defined as the "open loop"
response to moving stimuli. Since the fly's reaction
under normal fixation mainly depends on the instan-
taneous values of tpand tiJ,the functional F {tp(t),tiJ(t)}
reduces to a function of tp and tiJwhich can be written
as

F[ 1p(t), tiJ(t)] = Dt [tp(t), tiJ(t)] + Q[tp(t), tiJ(t)] ,

where Dt represents its even part and Q its odd part
in tiJ.It has been shown experimentally under normal
conditions of coupling between the test-fly and the
panorama that Eq. (2) can be approximated by a linear
expression in tiJwhich reads:

or
F= -D[tp(t)]+rtiJ(t)

F = + a~ U[tp(t)] + rtiJ(t),

(3A)

where U is the "potential" associated with D. .
It should be pointed out that our description of F

is based on a "quasistationary" phenomenological
approximation neglecting the dynamics of the fly's
reaction. This simplification is the basic reason why
Eq. (3A) is only valid for tiJ2> 0 (see Appendix I).
In order to examine experimentally the mapping of
potential-distributions into flight orientation-distri-
butions, the corresponding potentials of panoramas,
containing one or two black, vertically oriented stripes,
have been measured under strictly open-loop condi-
tions. Previously, Reichardt (1973), Poggio and
Reichardt (1973a), the experimental determination
of D(tp) and U(tp) has been carried out under partial
closed-loop conditions. That is, the panorama was
coupled to the test-fly but in addition elastically
bound to a position 1p= tpo. During the experiments
presented here, the test-fly was not coupled to the
panorama (open-loop conditions). The panorama was
symmetrically moved with randomly distributed speeds
and maximum amplitudes of about :t 5 degrees around
a given angular position tpo. The power spectrum of
the random signal was tuned to the fly's noise torque

(1)

spectrum, measured under closed-loop condition
Comparing the results obtained under partial close(
and open-loop conditions, we have observed that the
are in basic agreement with one another. However, j
the open-loop technique the reactions measured a1
strictly related to the selected tp-position whereas i
the partially closed-loop case the selected (averagl
tp-position is systematically shifted (maximally abol
5-10 degrees) towards the direction of flight.

The averages from measurements of D(tp)and tr
corresponding U(tp) for the different one and tw
stripe patterns are presented in Fig. 1a and b respe(
tively. Parameter of the experiments is the separatio
angle L1tp(center to center) between the two stripe
If one inspects the D(tp) and corresponding U(IJ
distributions one recognizes a flattening in the poter
tial minimum with increasing L1tpwhich finally result
in a build up of two minima.

In order to work out the mapping of the D(1f
or U(tp) distributions presented in Fig. 1, into th
associated stationary position-probabilityp(tp),D(1f
has to be introduced into the phenomenologica
Eqs. (1) and (3). In one of the preceding papers, Poggi,
and Reichardt (1973a), an analytical solution of th
equation was given under the assumption that N(,
is a gaussian white noise process. In fact the fly gener
ates a gaussian torque fluctuation N(t) whose spectra
composition is not white. Onder these conditions onl
an approximate solution can be given, see Appendix IJ
Therefore the stationary probability distribution P(If'

was obtained through a digital simulation of Eqs. (1
and (3). The simulations were carried out with a cou

piing value of ~ =8. 10- 3 sec,and numericalvalue:
of N(t) and r which had been specified before, Poggic
and Reichardt (1973a). One should however be awan
of the fact that the numerical values of these parameter:
vary to someextent from fly to fly.The p(tp)distribu
tions, obtained from the computer simulations, an
presented together with the ones actually measured
in Fig. 2a and b respectively, Comparing the computer
simulated p(tp) distributions with the experimentaJ
ones, one observes somewhat sharper fixations in the
simulations. Deviations between the two sets are
especially pronounced in the critical phase transition
range (L1tpbetween 40° and 60°) where the one-maxi-
mum in the p(tp)-distribution breaks into a two-maxima
configuration. These observations have two causes: as
we have stated before, the power of the torque noise
N(t), generated by the flies, shows some variability
from fly to fly. In our simulations we have applied
an N(t)-power which has been specified before, Poggio
and Reichardt (1973a),and seems rather typical for the

(2)

(3B)
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.11p=00

.11J1=100

.11J1=20°

.11J1=400

.11jJ=600

.11J1=80°

.11/1=100°

.11jJ=140°

.11/1=180°

Fig. I. (a) The "attractiveness" profiles D(tp) of 1- and 2-stripe patterns: parameter is the angular separation dtp between the stripes (5° wide).
The pattern was symmetrically moved with a maximum amplitude of :t 5° around each angular position 11':the torque generated by the
fly was recorded under open-loop conditions. The distributions presented in the figure are each averages of 6-15 individuals, and agree
well with equivalent measurements performed under partially closed-loop conditions, (b) "Potentials" U(tp) formally derived from the D(tp)
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test-flies. The second cause is the technique applied
in the experiments in order to determine the shape ,of
the D(tp) distributions. That is, the test-panoramas
were moved stochastically around a given tp-position
by about:!: 5°. This procedure of course introduces
some smoothing of the shapes of the D(tp)distributions
which in turn especially affects the critical range of
these ,1tp where the two minima in the potential
distributions build up. In Fig. 3 we have plotted the
separation angle .1tp:xP.versus the separation angle
L1tp~mut.for the p(tp) distributions with two maxima.
The plot shows that there is very good agreement in
the range 80° <.1tp< 180°, whereas the point at
,1tp= 60° does significantly deviate from the 45° line,
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,1tp:XP.having a greater value than ,1tp~mut..This obser-
vation varies from fly to fly and eventually the two
,1tp*-values are equal even in this critical region. The
disagreement between the two ,1tp*-values, mostly
found near or in the critical region of the symmetry
breaking in the potential-distribution, could be ac-
counted for by the smoothing ofthe D(tp)-distributions,
which, as has been discussed before, is a consequence
of the experimental method.

The effect discussed here is enhanced by the
influence of the non-white spectral composition of
the noise N(t). As it is shown in Appendix II the
non-white noise character of the fluctuation N(t) can
produce a two-maxima fixation-distribution even if
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Fig. 2. (a) Stationary probability distributions p(Ip),obtained from digital simulation of the Eqs. (I) and (3A). The D(Ip)characte
sented in Fig. 1a have been used in the simulations; the values of the other parameters are the ones used in Poggio and Reichat

The numerical values of the parameters are ~ = 8.10-3 see, ~ = 60 see-I, VA = 0.3 dyn em, y = \.9 see-I. The equivalent dunk e
simulated experiments was either 3 min (for .dip = 0° and .dtp = 20°) or 2 x 3 min. The normalization of the histograms is only app
similar to the one used in Fig. 2b. (b) Position histograms, obtained from single test flies during the stationary fixation of I-

e
patterns. Parameter is .dtp as before. The coupling constant amounts to - = 8. 10-3 sec. The duration of the experiments is t. k

in Fig. 2a
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the associated potential-distribution still has one
minimum; an effect which may be called an "eatly
phase transition". The size of the effect strongly
depends on the shape of the potential-distribution:
for instance a kink in the potential favours an early
phase transition with respect to the maxima of the
histogram.

Equations (1) and (3A) can easily be extended to
describe the average fly's behaviour under visual
tracking tasks. For instance if an object moves with
constant speed, the fly will track it (and lose it from
time to time, depending on the speed value) with a
phase lag, Virsik and Reichardt (1974). Under quasi-
stationary conditions (speed not too high), Eq. (III-!)
can be used directly to provide the steady-state proba-
bility distribution of 1p. Under the assumption of
N(t) being white gaussian noise, an analytical solution
can be given (see Appendix III). In Fig. 4 an experi-
mentally obtained probability distribution is com-
pared with another one generated by a digital simula-
tion of the dynamic equation (with the actual coloured
noise spectrum). Similar experiments with two stripe
patterns have also shown a satisfactory agreement
with the theoretical predictions. In summary: the
phenomenological equation describing the mapping
of the open-loop reaction into the closed-loop orienta-
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Fig. 4a and b. Theoretical (a) and experimental (b) histograms of
the stripe position in a tracking experiment in which a constant
voltage was added to the servomotor system simulating a stripe
moving at constant angular speed. The experimental histogram (b)
is typical for a test fly but a large amount of individual variability
is observed; the histogram (a) has been obtained through a digital
simulation of the equation (see also Appendix III) 81ji + (k+ r)
tjJ+ D(1p)=N(t)+ V, where the parameter values are the same as
indicated in Fig. 2a and D(Ip)is the first distribution (for the I-stripe
pattern) of Fig. I a. V was chosen such that the same rate of target
loss was observed during the experiments. The fact that the peak
of the distributions is shifted with respect to Ip= 0° means that the
fly tracks the stripe, moving at constant speed, with a certain phase
lag, which is quantitatively given by the phenomenological equation.
Other experiments have extensively proved this theoretical pre-

. diction; Virsik and Reichardt( 1974)

tion behaviour of the fly is in basic agreement with
our observations, at least for simple orientation tasks
as we have described here.

Additivity of Induced Torque ReSponse:
The Superposition Rule

In the preceding chapter we have presented a
sequence of D(1p)and corresponding U(1p)distributions
which were measured under open-loop conditions
with panoramas consisting of one or two stripes.
Fixation experiments with one, two and more stripes
have been carried out earlier, see Reichardt (1973).
Their results suggested that the stable orientation
directions of a test-fly confronted with two or more
stripes, are predictable from the D(1p)-characteristics
of one stripe by shift and superposition. However,
experiments testing the equilibrium positions can not
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Fig: 5. (a) D(Ip) distributions obtained by shift and superposition from the first distribution (,1Ip= 0°), which represents a symmetrized copy
of the experimentally measured D(Ip) (Fig. Ia). The results represent the" attractiveness" profiles for the 2-stripe pattern provided that the
"superposition rule" holds for all LlIpvalues. A comparison with Fig. I shows signifi'cant quantitative discrepancies. (b) Potential distributions

associated to the D(1p) of Fig. 5a

reveal whether superposition of the individual D(Ip)S
holds in a strict sense or whether it has to be weighted
by a (tp-dependent) factor. In fact the superposition
rule must fail when two or more stripes are brought
into closest proximity since the corresponding D(Ip)
distributions can not reach very large values.

In order to investigate this problem in quantitative
detail, we have constructed from a singlestripe D(Ip)-
distribution by shift and superposition,a sequenceof
D(Ip)- and U(Ip)-distributionsfor the various two-
stripe cases, characterized by the separation parameter
LlIp. These distributions are presented in Fig. 5a and b.
A first comparison between the distributions in Fig. 5a
and b and those actually measured in Fig. 2a and b
shows that they are similar in shape; however, a closer
inspection shows quantitative deviations. The location

of the minima in the potential distributions are im-
portant for the positions of the fixation maxima. In
Fig. 6 we therefore compare the separation angles
between the two minima in both cases. The plot in
Fig. 6 shows that there is perfect agreement between
the separation angles at 180°, 140°,and 100°. For the
data presentedin this paper, a deviationis found near
the critical region at 80°. Here, the separation LlIp:x~.
between the minima in the potential distribution turns
out to be larger than LlIp:u~in the case of superposition.
Since the shapes of the D(Ip)-distributions vary to some
extent from fly to fly, the deviation at 80° may be due
to the fact that different flies have been used in each
set of experiments. These differences can lead to
rather significant effectsin the critical region of LlIp
when two minima are emerging from one minimum



in the potential distributions. In fact, other data (for
- instance in Fig. 8) show that there can even be an
agreement between the actually measured separation
of minimaand the one predictedfromthe singleD(tp)-
distribution. However, one can not exclude that the
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Fig. 6. The separation angles .11'1':.;between the minima of the
experimentally measured potentials (Fig. I b) are compared here
with the separation angles LI1p:u~obtained through shift and super-
position of the D(1p)profile, measured in the I-stripe case. The
deviation at Ll'I'= 80° is probably not important, as Fig. 8 seems
to suggest. However, with respect to the size of the minimum
significant quantitative discrepancies are observed for lower

values of Ll'I'

deviation shown in Fig. 6 might depend on the in-
hibition which is discussed next.

As we have stated before, the quantitative details
of the two-stripe D(tp)-distributions cannot be obtained
through the superposition rule. The magnitudes of the
D(tp)-distributions are reflected in the depths of the
associated "potentials" which are presented in Fig. 7
as a function of the separation angle Lltpbetween the
two stripes. The data plotted were taken from the
actually measured distributions and those constructed
by shift and superposition. The two curves in Fig. 7
are widely separated from one another in the region
of small Lltp.This mismatch diminishes with increasing
Lltp,but does not completely disappear even for large
Lltp.At first sight one is inclined to explain the dif-
ferences between the two curves in Fig. 7 by assuming
that the large values in the measured D(tp) distribu-
tions are bound by saturation of the reaction. This
possibility is however ruled out by two observations:
first, the slope of the linear part of the D(tp)distribu-
tion around tp= 0 does not increase when the two
stripes are displaced from zero to about 30°, as would
be expected in the case of superposition, even in the
presence of saturation. Second, equivalent experiments
undertaken with short stripe segments, whose results
are presented in Fig. 8, prove that a possible saturation
can not be the main cause for the discrepancy between
the two curves in Fig. 7. Therefore our conclusion
is: the effects produced by the two stripes in the visual
system of the fly are influenced by an inhibitory
interaction which seems to be rather strong in the

I I I
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Fig. 7. Depth of the measured potentials of Fig. t b (*) - in ergs - and of the potentials of Fig. 5b, obtained through the superposition
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Fig. 8. In order to ruleout a saturationeffectas the possiblecause

for the quantitativefailureof the superposition rule in the case of

small ,111'values, 0(11') distributions have been measured for patterns

consistingof smaller stripes.The individualstripeis5° wide, has

only * length of the stripenormally used and itis located in the

middle of the lower half of the cylinder.The torque generated by

the fly is clearly smaller than in Fig. t a; nevertheless shift and super-

position of the distribution associated with ,111' = 0 would not result

in the distributions found for ,111' = 10° and ,111'= 20°. However

shiftand superposition of the symmetrized I-stripe0(11')leads to a

good approximation(continuousline) in the case ,111'= 80°.The
distributions presented here are averages of 5 individual open-loop

measurements

region 0° < Lltp< 60°. It is surprising that the weak
mutual inhibition does not completely disappear in
the region 60° < Lhp< 180°. We therefore believe that
the significance of our observations in this region
should still be considered as a somewhat open ques-
tion.

In preceding papers, Poggio and Reichardt (1973a),
Poggio (1974), a general description of the underlying
nonlinear neural interactions has been discussed. It
is important to realize in this context, that in the
experiments presented in this chapter, the two objects

were moved coherently. In other experiments where
the optomotor reaction to stripes of different widths
was studied, it was observed that for stripe widths up
to about ,11p~ 40° the total effect was less than the
sum of the partial effects of the individual stripe edges,
Geiger (1974), which is consistent with our observa-
tion. In these experiments the two edges moved co-
herently. Quite different are the results from experi-
ments, Virsik and Reichardt (1974), where an object
was moved incoherently with respect to a background
consisting of visual noise. Under these conditions the
observations suggest that - due to incoherence - the
mutual inhibition between the effects released by the
object and the background is destroyed as it may be
in the case of nonlinear interactions. Experiments
devised with the aim of characterizing the type of inter-
actions in different parts of the compound eyes are
now in progress in our laboratory.

Discussion

The interpretation of the experiments 'presented
in this and in the preceding papers, Reichardt (1973),
Poggio and Reichardt (1973a), is based on a pheno-
menological equation of motion in which the reac-
tion of the fly to a moving pattern only depends on
the instantenous values of its position Ip and speed
1jJ.This assumption which, under quasistationary con-
ditions, represents a good approximation, does not
strictly hold, for example, for the tracking of objects

'moving with variable or high speeds. The tracking
of objects moving with constant and not too high
speed can be treated under quasistationary conditions,
as discussed before; see also Virsikand Reichardt
(1974). As a matter of fact the quasi-stationary ap-
proach is limited to those experimental conditions
where the dynamics of the Ip-dependent evaluation
mechanism can be neglected. A complete treatment of
the general case requires the consideration of a multi-
input system with spatially non-homogeneous dynamic
properties, developed more recently, Poggio and
Reichardt (1973b), Poggio (1974).

As has been mentioned in the discussion of our
first paper, Poggio and Reichardt (1973a), Eqs. (1)
and (3A) can be extended to describe simple tracking
situations. Agreement between theory and experiments
has been reported here for the tracking of one object
moving at constant speed. The essential validity of
our phenomenological equation to describe tracking
tasks under natural conditions has been verified in
observations of chases between free flying flies; Land
and Collett (1974).



In the preceding paper we have considered the
transformation which maps the pattern dependent
D(1p) distribution into the orientation distribution
p(1p), under the assumption of a "white" gaussian
torque fluctuation process. The effects on this trans-
formation, due to the actual coloured spectral compo-
sition of the fluctuation process, have been treated in
this paper. In the "white" noise case, the stationary
probability distribution is a function of the potential
distribution U(tp)only,whereasin the "coloured"case
it is a function of U(1p)and its first and second deri-
vatives, at least in the range of validity of the approxi-
mation derived in Appendix II. As an important
consequence of this dependence, a symmetry breaking
in the maxima of the stationary orientation behaviour
may occur without a corresponding symmetry break-
ing in the potential minima. This observation shows
that quantitative changes in the spectral composition
of the fluctuation process can lead to qualitative
changes in the stationary behaviour of the system.
However, it should be pointed out that in the majority
of the situations the white noise hypothesis is com-
pletely satisfactory.

Finally a very intersting hint towards the existence
of nonlinear inhibitory interactions in the orientation
mechanism is provided by our investigations of the
validity of the "superposition principle". As expected,
the "attractiveness" of neighbouring stripes cannot be
the sum of the "attractivenesses" of the individual
stripes; according to our data nonlinear inhibitory
interactions rather than saturation effects seem to play
a major role. From the quantitative failure of the
"superposition rule" (for Ll1p< 80°), it is clear that
interactions between input channels affect the" attrac-
tiveness" of patterns. Therefore, beside the" direct
channels", which probably provide the position in-
formation underlying the orientation behaviour to-
wards small objects, Pick (1974), surrounding non-
linear interactions are also present. They might
strongly and selectively depend on the spatio-temporal
mapping of the specific pattern onto the receptor
array; Pick (1974),Geiger and Poggio (1974),Reichardt
and Poggio (in preparation). On the other hand for
separations larger than 80° the superposition rule
seems to represent a satisfactory approximation. If
this also holds for more dynamic degrees of freedom,
Wehrhahn and Reichardt (1973), a "transitivity law"
for spontaneous pattern preference in flies will apply,
Poggio (1974), in this range of pattern separations,

A characterization - now in progress - of the
functional properties of these interactions is outside
the phenomenological level of the present work as
it requires a different approach and formalism; Poggio
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and Reichardt (1973b), Poggio (1974). We shall
report these results later.

The nonlinear interactions underlying the position
dependent fly's reaction may provide a powerful
mechanism for selective pattern attraction, as suggested
by our experiments. They actually might implement a
type of distributed parallel processing which seems
more powerful than in the case of linear lateral inhi-
bition; Poggio (1974).

A knowledge of the interactive structure should
finally lead to the D(tp) profile and, through the
phenomenological theory, to the associated stationary
orientation behaviour of the fly for arbitrary patterns.

AppendixI
Since;: each receptor in the eye of the fly transduces the time

course of a local light intensity, evaluation of visual stimuli is
obtained from I or more interacting inputs. In this sense the actual

parameters which determine the "open loop" fly's reaction are the
light fluxes onto each receptor rather than the phenomenological
quantities 1p and 1jJ.A description in terms of interactions can be
given by a Volterra series. The light flux into a receptor i is given by

Xj(t) =JlIi(~) f[~ -1p(t)] d~, (1-t)

where IIi represents the contrast transfer function of receptor i and

f the pattern. For small displacemej1ts of a narrow stripe around a
given angular position 1po, Eq. (I-I) can be linearized as

Xi(t) ~ aj + bi LI 'Pi(t), (1-2)

which, substituted into the Volterra functional series for the inputs
located in the neighbourhoods of 'Po, leads to a series in Ip(t), valid

for small displacements around 'Po. Taking into account that the
fly's average reaction is zero if 1jJ=0, we may write, up to quadratic
terms,

F",o{'P(t).} = .r1C~~(t- ,d LltjJ('I) d,!

+ J.f1C;:(t- 'I' t - '2) Ll1jJ('I) LltjJ('2) d,! d'2 .
(1-3)

which is valid for movements of small amplitudes around Ipo. The
nonlinear transformation Eq. (1-3) can be linearized, Poggio and
Reichardt (1973), Kasakov (1961) through the statisticallineariza-

tion method which gives the best (in the least square sense) linear
inertialess approximation of Eq. (1-3) as

with
F(t) ~ ,tjJ(t) + D('Po), (1-4)

FtjJ
r= -. 2 ''P

again valid around '1'0 and dependent on the tjJstatistics; see Appen-
dix A in Poggio and Reichardt (1973a).

The extension of Eq. (1-4) to describe reactions for movements

not restricted to a neighbourhood of 'Po is somewhat ill defined.
However, the average reaction F is known to be rather independent
from the frequency of small oscillations, Fig. 5 b, in Reichardt (1973),
and the inertia less assumption seems reasonable under normal
fixation conditions, suggesting the validity of Eq. (1-4) for all 'P.
Actually the "quasi-stationary" approximation Eq. (3 B) gives

D('I'o)= F,

---_.~
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seUconsistently, through Eq. (I), the correct average quantitites -
like the lp-probability distribution - which characterize the fixation
process.

Whenever the dynamics plays an important role - as in some
tracking conditions, where the "memory" of the system and the
"history" of the stimulus are highly critical - Eq. (1-4)cannot be
considered sufficient any more and a general description must be
derived directly in terms of receptor interactions; Reichardt and
Poggio (in preparation), Poggio (1974).

Appendix II

In the following we will give the approximated stationary
solution, based on a method developed by Stratonovitch (1967),
of equation [Eq. (C.3) in Poggio and Reichardt (1973a)]

0
(k+r)1jJ+- U(lp)=N(t) ,

011'
(II-I)

where N(t) is a coloured gaussian process with the power spectrum
- 2Ay

N(w) = ~.
y +(0

A new method will also be developed to give the probability
of barrier crossing in this non-white case, generalizing known
results of Kramers (1940) concerning the white noise case. These
results may also be of interest in connection with the stochastic
treatment of generalized tracking systems: see Lindsey (1972).

Although the analytic approximate solutions which we will
obtain are not accurate for our parameter values (the probability
distributions plotted in Fig. 2a were obtained through digital simu-

lation), nevertheless they fully illustrate the critical role played by
the coloured spectrum. Depending on the spectrum of the fluctua-
tions an "early symmetry breaking" in the peaks of the probability

distribution can take place without a corresponding symmetry
breaking in the shape of the potential U(lp). The effect is a simple
illustration of the importance of the nature of fluctuations, when not

thermal-like (delta.,correlated), in determining the phase transition
behaviour of a system, see Nicolis and Prigogine (1971). It is easy
to check that Eq. (II-I) and the corresponding Fokker-Planck
Eq. (II-S) do not satisfy the conditions of detailed balance; Graham
and Raken (197n Therefore no general method is available to
obtain the stationary distribution for Eq. (I-I). Equation (II-I) can
be rewritten in the phase space [see Eq. (C.6) in Poggio and Reichardt
(1973 a)] as

. 1
lp-D(lp)- =x(t)

k+r

x+yx= W' with Sw'w.(t)= 2Ay 2 b(t).
(k+r)

Differentiating the first equation, inserting the second and using
the first again gives

m21ji+ (t - m2 ~: (11'))1jJ- H(tp) = W"(t)
where

12_-m -
y

D(lp) = H(tp)
k+r

2A b(t).
Sw.w.(t)= (k+r)2y

Equation (11-3) can also be rewritten as

m1jJ=v (11-4)

mv + [I - m2 H'(lp)] ~ - H(lp) = W"m

and the corresponding Fokker-Planck equation is

Op 0 (
V

)
0

{

, v H(ip)

}
-=-- -P -- vH(lp)--+- P
ot 011' m OV m2 m

(11-5)
S02 . sA 2+--P WIth -=-m.

2m2 OV2 2 (k + r)2

To find an approximate stationary solution we write the probability
density in the form

p(lp, v) = L P.(lp) w,,(v) (11-6)

where

w,,(v)= 1I/:!~F(.+') (lfIv )V --; v;;! V --;
1 d"-.t:.

F(.+1)(z)=--e 2.
~dz"

Since we are interested in the stationary distribution p(lp), integrating

Eq. (11-6) with respect to w gives

because
p(lp) = Jdvp(lp, v) = Po(lp), (II-7)

+",
.f W.(v)dv = b..o .

Therefore we will derive in the following an approximate equation
in Po. Substituting (II-6) into (II-S), using relations among the W.,
collecting the w" with the same n and keeping the first three terms
of the expansion, Eq. (II-6) gives three equations in Po(tp), PI (11'),and
P2(tp). From the three equations we can derive an approximate
equation in Po which reads

O

[

20

(
SO

)]

O

(
20 2

)- I+m - -H+-- Po=- I-m -+m H'
at 011' 2 011' 011' ot

.(-H+ !...~ )po
2 011'

(II-2)
2 02 S '

)+m --(H Po
011'22

02

(
SO

)
2

. +-m2 -H+-- Po
011'2 2 011'

+O(m4) (II-8)

(II-3) .where O(m4) indicates terms of order m4 or higher.

Dividing the two sides by
[
I + m2 ~ (- H + !...~

)]
and

011' 2 011'
using the identity

~ (-H+ !...~ )2 -
[

~ (-H+ !...~
)]

2

011'2 2 011' 011' 2 011'

= - ~ (~H-H~ )(-H+ !...~ )011' 011' 011' 2 011'

(II-9)



we obtain

a "a

{(
2
(

a a
)

2 ,)"8c-Po = a-;p 1- m a-;pH - H a-;p + m H

.(- HPo+ + a~ po)}

2 S a2 4+m '-
2 ~H'po+O(m).atp

(II-1O)

a
The stationary solution of Eq. (II-1O) - for- Po= 0 - represents,at
according to Eq. (11-7), the approximate stationary solution of
Eq. (II-S).

A formal integration with respect to tp gives

const = (- H + m1 "f H") p(tp)

+ (-f + m1 + H') p(tp) + O(m4)

(II-II)

which has the solution, at the accuracy chosen before,

+IH{~'d"'-~ , d
p(tp) = const e s H (~,- m' dq;H("" (II-I 2)

as it can be checked.

Rewriting Eq. (II-12) as

- +(H"U(~I--!- D2(~)- ---'-- dD(~'
p(tp)= conste 2A ,(H,' d~ (II-I3)

it becomes obvious that p(tp) may present two maxima even if U(tp)
has only one minimum (early phase transition). For instance a flat
potential with sharp rising edges will have this property. The strength
of this effect depends critically on the spectral composition of the
fluctuations.

It is also possible, using Eq. (11-13), to find an alternative solu-
tion to the problem of barrier crossing (with non-white noise) already
outlined in Appendix C of Poggio and Reichardt (1973a).

Equation (C.21) in Poggio and Reichardt (1973a) through the

b
. .,

( )
O(tp). r ' Osu stltutlon x t = w - - gIves ,or tp = ,
k+r

_~W2~' w -~('
p(tp'= 0, w)= C"e 2d - f d{ e 2d .

2nd ~<X>

(II-14)

Because of our quasi stationary conditions Eq. (C. t 7) and Eq. (C.21)
must become identical in the limit { -+ 00, giving

C"=C' . (II-IS)

Equation (II-I3) around tp. and Eq. (C.20) allow us to find the
value C' as

VS5
/. ,

LI -- --(H'JE
C'= const - eYe A .

2nd (II-t6)

Equation (II-I3) around tpo gives the normalization factor

/'/(/+'/) _.!..
-e'.

2nd

Equations (II-I?), (II-t6), (II-IS) serve to normalize C' of Eq. (II-t4)
which can be used now to provide the probability flow across the
ba'rrier

const = (II-17)

+ <X>

jb = J p(tp' =0, w) wdw. (II-IS)
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An integration by parts gives

lJrd
j.= C' V --:1+T-:;1'

(11-19)

which can be rewritten, as probability of barrier crOSSing.nor-
malizing C' through Eqs. (11-17),(11-16),(11-15),

(3i-
I I 7+--

Pb= -- k+r s+",
2n k+r a' ~e-";i;;+;j' e-'T"+')£

'/-- .
k+r

(11-20)

which is valid under quasi stationary assumptions and in the same
approximation of Eq. (11-13)('I great enough). Clearly in the white
noise case (,/-+00, A =cy) Eq. (II-2O)becomes consistently Eq. (41).
Moreover under .the condition ,/(k + r» (a + a') Eq. (II-2O) is well
approximated by Eq. (C.27), whose range of validity is more re-
stricted.

A number of alternative approaches to the type of problems
treated in this as well as in the next Appendix are available and will
be discussed elsewhere.

Appendix m

In the case of a stripe moving at constant speed the tracking
equation, derived from Eqs. (I) and (3A), is

. iJ

(r + k) tp + a-;p (U(tp)} = N(t) + V,
(111-1)

where V represents the voltage (in dyn em) added into the closed
loop system in order to simulate an object moving at constant

V
angular velocity w= -, In Eq. (1II-t) the parameter e is assumedk
to be equal to zero (as in Appendix II) because of its very small
value. The coordinate tp represents the angular error between the
ny's direction of flight and the position of the object. The noise
N(t) is assumed to be gaussian white, with an autocorrelation
SNN(') = 2eD(,).

The statistics of the process Ip(t) can be given exactly by the
Fokker-Planck technique, which associates with Eq. (IlI- t) -
interpreted in the usual way as an Ito equation - the following
partial differential equation in the probability density p(tp, t)

ap a (
O*(tp)

)
e a2p

at = - a-;p ~p + (k+ r)2 a1p2'
(1II-2)

. au(tp)
wIth O*(tp) = V - -.

atp
The stationary solution p(tp)must satisfy to

d2P d

(
k + r

dtp2 - ---;j;p,,~O*(tp)p) =0,
(111-3)

to the boundary condition

and to
p(n)=p(-n), (III-4)
2.
J p(tp) dip = t .
0

(III-S)

Integrating once, Eq. (111-3) gives

~ = C, + (k + r) O*(tp)p(~}).
dtp e

(III-6)
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The general integral of Eq. (IlI-6) is given by the integrant
factor method as

jd",!!.!./)'(",) '" -j!!.!./)'(",)d",
p(tp)=C1e ' Je' dtp.

c,

In order to satisfy Eq. (111-4) C2 is chosen as

(111-7)

C2 = tp - 2n. (III-8)

Defining U*(tp) = Vtp - U(tp), Eq. (IlI-7) can be rewritten as

!!.!.UO(",) '" -~UO("")

p(tp)=C1e' J e' dtp',
"'- 2.

(III-9)

with C1 given by the normalization condition, Eq. (111-5). When
V ==0 the equation reduces consistently to Eq. (31) of Poggio and
Reichardt (1973a).

The probability distribution Eq. (111-8) can be interpreted as
the probability distribution of a brownian particle in an external
field of forces generated by the (non cyclic) potential U*(tp) = Vtp

- U(tp). The behaviour of the fiy in this tracking situation, as model-
led by Eq. (111-I), ifformaIly equivalent to that of a coherent tracking
loop, which is a communication receiver operating as a coherent
detector. Other results, related to Eq. (IlI-9), can be found in the
literature on the subject; see Stratonovitch (1967), Lindsey (1972).
This analogy with a class of modem tracking systems can be useful
in discussing in which sense the fiy's tracking behaviour is optimal; it
may even embed a much deeper meaning, pointing towards general
mechanisms which may underly the orientation behaviour in in-
sects; Poggio (in preparation).
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