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Abstract

One of the most critical aspects of a truly intelligent system is the ability to learn, that is, to
improve its own functionality by interacting with the environment and exploring it. In this paper,
we argue that learning from exploring the environment should be the main goal in developing
artificial intelligence. We also argue in favor of an integrated system— combining several state-
of-the-art aspects of artificial intelligence, such as speech, vision, natural language, expert
systems—as the experimental platform with which to approach this problem. We then describe
the main features of a project of this type, MAIA, which is under development at I.R.ST. The
vision components of the system will be discussed in some detail, especially the navigation archi-
tecture of the indoor robot available to MAIA. We will conclude outlining some initial learning
problems that will be approached within the MAIA project, such as learning to recognize faces
and learning to update the map of the Institute used for indoor navigation.

1. A New Definition of Artificial Intelligence

The “Turing test” has represented for several years a definition of intelligence
against which most workers in artificial intelligence (1) have implicitly measured
their own goals and achievements. It is an operational definition: If a computer
behaves in a way indistinguishable from a human person, then it can be called
intelligent. Recent criticisms of Al for instance by Searle [1], can be summarized
neatly by recognizing that they amount to questioning the validity of this defini-
tion of intelligence. Criticisms of this type are somewhat moot, since definitions
are just definitions. It is, however, interesting to look for definitions of intelli-
gence that are alternative or complementary to Turing’s, not in order to claim
that the computer can never be intelligent (as Searle and, more recently, Penrose
[2] claimed) but in order to better capture the essence of the problem of creating
artificial intelligence, at least as it is perceived today after 25 years of work in A1

Twenty-five years ago, intelligence was mainly reasoning, proving theorems,
and playing chess. Today we realize how “intelligent” lower animals are and how
complex are the problems that our senses routinely solve. We also realize how in-
tractable is the problem of producing software and how much of it would be
needed in order to replicate even just some of the simplest aspects of intelligence
(think of the project by Lenat in Austin!). In this perspective, it seems natural to
propose a somewhat different definition of intelligence. We suggest that this new
definition should emphasize learning. Consider an artificial system such as a
robot: We may define it as intelligent if it would be able to learn from exploring
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the environment, a little bit like a baby, even if its overall performance would be
initially quite low.

It is not completely clear whether our test could be defined in a rigorous way
because a system cannot learn from a state of “tabula rasa.” The necessity of an
adequate combination of “nature” and “nurture” is now widely accepted, also be-
cause of overwhelming biological and neurophysiological evidence. In any case,
the spirit of our definition should be obvious. To satisfy our “test” and say that
we have indeed an intelligent system, it is not enough to build an expert system
capable of perfect medical diagnosis or an automatic translator from English to
Chinese. A system, on the other hand, that speaks a grammatically incorrect
Italian but has learned it in a way similar to how a child learns to speak would cer-
tainly pass our “test.” We propose that a system that can improve itself with learn-
ing and by exploring its environment should be called intelligent. Our definition
has the precise goal of introducing in an explicit way the problem of learning as
the “new” frontier in the attempt of understanding and synthesizing intelligence.

Most researchers would now agree that a1 has reached a barrier that has
blocked its progress in recent years. The barrier, we argue, is the inability of the
systems developed so far to evolve by themselves, i.e., to learn without explicit
programming. Of course, there have been many attempts—some interesting—of
mechanizing learning, and it is clear to most that machine learning is a crucial
area in AL

2. Why An Integrated System

One of the most constructive contributions of a1 has been the realization that
research in intelligence is an experimental science and that computers —what-
ever their architecture: analog or digital, parallel or serial, silicon-based or
protein-based—are the basic tool with which to test theories. From this point of
view, we argue that an attack on the problem of learning requires an appropriate
experimental platform that can interact with its environment and explore it. It
follows that the system should have sensory and probably motor capabilities ade-
quate for dealing with the physical world. A purely electronic agent, interacting
with a simulated or nonphysical environment, will probably be inappropriate for
exploring the problems of learning that are basic to humanlike intelligence.

In a similar way, it seems important to develop an integrated platform that
may acquire and process different types of information such as spoken and writ-
ten language in addition to visual images. Notice that the sum of relatively
simple behaviors can easily originate a behavior that a human observer will
likely judge as complex and even intelligent. Furthermore, an integrated platform
of the type we envisage is not simply a multisensor system but rather a system
that exploits multiple sources of information. After all, any system ought to
know a substantial amount in order to learn efficiently.

All the above reasons led to the formulation of MAIA (acronym for Modello
Avanzato di Intelligenza Artificiale), the main project now starting at LRST,
which has the goal of developing an integrated platform with which to attack the
problem of learning.
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3. The Project MAIA

An automatic “concierge” for the Institute is the metaphor for the main func-
tion of MAIA (see Figure 1). The system will respond to spoken and written
questions about the function and the organization of LR.ST. It will be able to
send a mobile platform to guide a visitor to a certain office in the Institute or to
perform functions such as surveillance. It will have “terminals” in the Institute,
such as an electronic librarian, capable of recognizing persons from their faces
and voices and capable of reading the titles of borrowed books, again from im-
ages captured by a CCD camera. The system will interact with people in various
ways, such as voice, written text, touch screens, telecontrol, and the usual
keyboard. It will explore the physical environment of the Institute through its
“tentacles”—i.e., mobile platforms of various sizes and dimensions, capable of
navigating in the corridors of the Institute on the basis of several types of sen-
sors and of a map of the building.

Different fields of a1 will converge in the realization of MAIA, which is, in fact,
an excuse for forcing their integration. Speech understanding, natural language,
planning, knowledge-based systems, man-machine interfaces of the hypermedia
type, and vision are all technologies that MAIA will require. In the following,
we will concentrate on the vision component of MAIA and discuss briefly our
initial results.

4. The Vision Components of MAIA

There are three main vision projects within MAIA (Figure 2).

® Indoor navigation.
@ Text segmentation and optical character recognition (OCR).
® Face recognition.

Librarian
Terminal

Concierge
Terminal

Robot

Figure 1. Some of the “terminals” of MAIA.
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Figure 2. The main vision projects within MAIA.

VISION

4.1. The Architecture of the Navigation System of MAIA

The project has a well-defined goal within MAIA: to provide the robot with
the capabilities of navigating in the Institute between any location A and any lo-
cation B in the map. More fundamentally, it is an experimental sandbox for ex-
ploring different architectures for indoor navigation and control.

The navigation architecture is shown in Figure 3. It consists of a set of autono-
mous routines for navigation, controlled by a planner. Each routine is synthe-
sized as a feedback loop between the sensors and the actuators and supported by
different sensory modules: the vision module, the ultrasound modules, and the
odometer. We plan to explore rather classical control routines in which sensory
inputs update the state of the system that is used to control the robot. These rou-

e
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Figure 3. A sketch of the architecture of the navigation system for the mobile

platform of MAIA. A set of simple “reflexes” that use visual sensors, ultrasounds,

and the odometer is programmed by a simple planner that has access to a map of
the Institute.
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tines are of the representational type, since their characteristic feature is the con-
tinuous estimate of a state vector representation of the robot and of the world.
We are also exploring more reflexive architectures composed of routines in
which the sensory inputs are controlling directly and independently the robot
without an explicit representation of the state. We expect to be able to define the
advantages and disadvantages of these two approaches and come up with the
“correct” one, probably a combination of both.

The main vision module is the floor boundary sensor Fs. The FBs [3] uses two
CCD cameras to estimate the distance of the robot from the walls from the posi-
tion in the image of the boundaries between floor and walls. It exploits the a pri-
ori knowledge about usual modern indoor environments with their vertical walls
and their horizontal floors. The ¥Bs supports routines of the two classes de-
scribed above (Figure 4):

® The way the apparent boundary floor-wall changes in the image plane
(whether it shifts parallel to itself or whether it changes slope) directly con-

other sensors
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Figure 4. The main visual reflex, based on measurements of the position in the im-

age of the boundaries between floor and walls that drive the estimation through

Kalman filtering of the state vector of the platform and the environment. The esti-

mate of the state vector is used to control in real time the platform and to estimate

the new position in the image of the boundaries. This last step stabilizes the feature

extraction step. The overall “reflex” is similar to the scheme used by Dickmanns
and by the BMW group to drive a car.
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trols the robot. This is an example of reflexive control that works without
any representation of the state of the robot, directly on measurements on
the image.

e Measurements of the position of the boundary in the image plane are used
to estimate through a calibration function and Kalman filtering the position
of the robot in the corridor relative to the wall. Control is performed on the
basis of the state vector. This is an example of representational control.

The FBs can support several specific navigation routines, such as to go straight
in a corridor keeping the midline or to go straight until a corner is detected. The
other modules can support similar routines. The problem of integrating different
sensors within single routines has an elegant solution within the representational
approach: Kalman filtering (see [4]) can be used to integrate the different types
of measurements into an estimate of the state vector. The reflexive approach
does not offer—it seems—a general solution to this problem but only the heuris-
tic suggestion of simple interactions between sensors such as reciprocal activa-
tion and inhibition.

An important component of the navigation architecture is the planner, which
in our approach is very simple. It has access to a map of the Institute, which in
the version now implemented is a bitmap of free spaces and obstacles and which
will soon represent the connection between commands in natural language and
the navigation system. One of the most interesting goals of this project is to ex-
plore experimentally the boundary between reflexes and a planner. How well
will the system function without a planner? Where is the boundary between a
pure “insect” and conscious planning? How much can the spinal cord do without
the cortex? The answers we expect are what common sense suggests: Reflexes
alone can only support very simple behaviors but not more complex and goal-
oriented ones; reflexes with a planner can support a robust control system. Ex-
periments will tell us whether we are correct.

In addition to a standard, rather large mobile platform that we are modifying
extensively with the addition of visual sensors, new ultrasound devices and a
386-based on-board processor, we plan the development of a minirobot with a
smaller and cheaper platform of about 40 x 40 X 40 cm. The minirobot will
have several functions: the development of sensor and control subsystems of the
main platform, the development of cost-effective platforms for automatic sur-
veillance, and the possibility to study in an experimental way modes of interac-
tion between autonomous agents (how to avoid each other, how to cooperate,
how to coordinate).

4.2. Text Segmentation and OCR

The ocr project capitalizes on a wealth of experience at LR.ST. in the field.
Its focus will be text-reading from a rather unconstrained image of the cover of
a book that will not be at a constant distance from the camera, will not be par-
allel to the image plane, and may contain characters with poor contrast against
different types of background, possibly containing graphics. Therefore, the main
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focus of the project will be segmentation of text from background. Beyond its
specific relevance to OCR, this problem is of a far more general interest: We be-
lieve that “segmentation” of an image in regions likely to represent different ob-
jects’ surfaces is, at present, the key problem in visual recognition.

The specific task is to read titles and author names from the cover of books
presented to the camera in a somewhat unrestricted way: The book will not be
perfectly perpendicular to the image plane, and its location in the image will be
variable and so, also, its size and distance. Fonts and their background and loca-
tion will be highly variable. Illumination is assumed to be constant. This specific
system goal is also an excuse for exploring a problem of fundamental importance
in vision tasks and especially in the recognition of 3D objects: the problem of
segmenting and grouping regions in the image that are likely to be associated
with distinct objects. Here we are dealing with the problem of segmenting the
image of the book from the rest and with the problem of finding and grouping
the title and author names against the background of the cover (see [5]).

4.3, Face Recognition

Face recognition is a specific instance of object recognition, possibly the most
important visual task. The project has a specific goal—to develop a system for
recognizing isolated, frontally viewed faces under controlled illumination—and
the more general motivation of exploring the basic problem of 3D object recogni-
tion. We divide the problem into two basic steps:

® Extraction of several features from images of faces, such as the color of the
hair and the position of the eyes. This part of the project should define the
set of needed features and how to compute them reliably (see [6]).

® Use of the hyper basic functions (Hyper BF) technique for learning from ex-
amples (described in the section on learning) to synthesize modules that can
recognize each face. The first step is to extend the work of Poggio and Edel-
man [7], described in the next section, from simulated objects to real ob-
jects. Since they used simulated wire frames, we plan to test our extended
technique at first on real wire-frame objects (paper clips).

4.3.1. Application of the Hypersr Technique to Object Recognition: Poggio
and Edelman have applied the Hypersr technique to the problem of 3D object
recognition with promising results [7]. They have been able to synthesize a mod-
ule that can recognize an object from any viewpoint, after it learns its 3D struc-
ture from a small set of 2D perspective views, using the Hypersr network
scheme. Their results were obtained so far with simulated wire-frame objects
and assumed that the problems of feature extraction and matching were already
solved. We summarize in the following the main point of their work.

Shape-based visual recognition of 3D objects requires the solution of at least
two difficult problems. The first problem is the variability of object appearance
due to changing illumination, which may be addressed by working with relatively
stable features, such as intensity edges. The remaining problem, the removal of
the variability due to the unknown pose of the object, may be solved by first hy-
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pothesizing the viewpoint (e.g., using information on feature correspondences
between the image and a model), then computing the appearance of the model
of the object to be recognized from that viewpoint and comparing it with the ac-
tual image. Generally, recognition schemes of this type employ 3D models of
objects. Automatic learning of 3D models is in itself a difficult problem. Conse-
quently, few present schemes learn to recognize objects from examples and most
use 3D models acquired through user interaction.

Is the need for 3D range-based or manually specified models real? Structure
from motion theorems indicate that full information about the 3D structure of
an object represented as a set of feature points (at least five to eight) is present in
just two of their perspective views, provided that corresponding points are iden-
tified in each view. A view is represented as a 2N vector X1, y1, X2, Y2, -+ > XN, YN
of the coordinates on the image plane of N labeled and visible feature points on
the object.

Poggio and Edelman have approached this problem by assuming that all fea-
tures are visible, as they are in wire-frame objects [7]. In principle, therefore,
having enough 2D views of an object is equivalent to having its 3D structure
specified. This line of reasoning, together with properties of perspective projec-
tion, suggested to them (a) that for each object there exists a smooth function
mapping any perspective view into a “standar ” view of the object and (b) that
this multivariate function may be synthesized, or at least approximated, from a
small number of views of the object. Such a function would be object-specific,
with different functions corresponding to different 3D objects. Furthermore, the
application of the function that is specific for one object to the views of a differ-
ent object is expected to result in a “wrong” standard view that can be easily de-
tected as such.

Synthesizing an approximation to a function from a small number of sparse
data—the views—can be considered as learning an input—output mapping from
a set of examples and fits well the Hypersr scheme described above.

Poggio and Edelman [7] demonstrated a successful application of Hypersr to
the recognition problem. They considered the special case of recognizing a wire-
frame 3D object from any of its perspective views with N feature points (we
mainly used N = 6). A Hypersr module, trained on several tens of random
views, was shown capable of mapping any new view of the same object into a
standard view (e.g., into one of the training views, chosen initially).

Poggio and Edelman [7] also explored the use of a smaller number of basis
functions than training views and used gradient descent to look for the optimal
locations of the centers t. in addition to the optimal value of the c,. They found
satisfactory performance with just two basis units (for 10-40 training views and
with the attitude of the object limited to one octant of the viewing sphere). This
suggests that a small number of units are needed for each aspect of an opaque
object.

Notice that the Hypersr approach to recognition does not require as inputs
the x, y coordinates of image features: Other parameters of appropriate features
could also be used, such as corner angles or segment lengths, or the color and the
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texture of the object. Recognition of noisy and partially occluded objects, using
realistic feature identification schemes, requires an extension of the scheme,
even if the problems of object segmentation and selection are addressed sepa-
rately. A possible extension of the scheme involves a hierarchical composition of
Hypersr modules, in which the outputs of lower-level modules assigned to detect
object parts and their relative disposition in space are combined to allow recog-
nition of complex structured objects.

5. Learning and MAIA

As we said at the beginning of the paper, the main long-term goal of the
MAIA project is to attack the problem of learning from experience. There are
several instances of this general problem that will be approached in the immedi-
ate future. In the area we have considered, vision, two learning problems are be-
ing considered right now:

® The synthesis of a module capable of recognizing faces from a series of ex-
amples of that face (see previous section).
® The update of the map of the Institute by the robot exploring the Institute.

Obviously, the problem of learning does not have a single solution, i.e., a single
algorithm for all cases. The two examples sketched above show that there are
different types of learning that probably require different solutions. A technique
that seems relatively general is the Hypersr technique that we plan to use for ob-
ject recognition and for synthesizing control modules of the robot. In the follow-
ing, we summarize the main features of the method. More details can be found
in the papers by Poggio et al. [8-13].

5.1. The Hypersr technique

This section describes a technique for synthesizing approximation modules
through learning from examples. These modules could be used for the task of
face recognition and other tasks, such as control problems. We first explain how to
rephrase the problem of learning from examples as a problem of approximating a
multivariate function.

To illustrate the connection, let us draw an analogy between learning and input—
output mapping and a standard approximation problem: 2-D surface reconstruc-
tion from sparse data points. Learning simply means collecting the examples,
i.e., the input coordinates x;, y; and the corresponding output values at those lo-
cations, the heights of the surface d;. Generalization means estimating d at loca-
tions x, y where there are no examples, i.e., no data. This requires interpolating
or, more generally, approximating the surface (i.e., the function) between the
data points (interpolation is the limit of approximation when there is no noise in
the data). In this sense, learning is a problem of hypersurface reconstruction.

From this point of view, learning a smooth mapping from examples is clearly
ill-posed, in the sense that the information in the data is not sufficient to recon-
struct uniquely the mapping in regions where data are not available. In addition,
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the data are usually noisy. A priori assumptions about the mapping are needed to
make the problem well posed. One of the simplest assumptions is that the map-
ping is smooth: Small changes in the inputs cause a small change in the output.
Techniques that exploit smoothness constraints in order to transform an ill-
posed problem into a well-posed one are well known under the term of regu-
larization theory. We have recently shown that the solution to the approximation
problem given by regularization theory can be expressed in terms of a class of
multilayer networks that we call regularization networks or Hypersr (see Fig-
ure 5). The main result [8] is that the regularization approach is equivalent to an
expansion of the solution in terms of a certain class of functions:

N
fx) = EC:G(X;&) + p(x), (€]

where G(x) is one such function and the coefficients c; satisfy a linear system of
equations that depend on the N “examples,” i.e., the data to be approximated.
The term p(x) is a polynomial that depends on the smoothness assumptions. In
many cases, it is convenient to include up to the constant and linear terms. Under
relatively broad assumptions, the Green’s function G is radial, and, therefore, the
approximating function becomes

N
ﬂn=§aah—&%+pm, )

which is a sum of radial functions, each with its center & on a distinct data point
and of constant and linear terms (from the polynomial, when restricted to be of
degree one). The number of radial functions, and corresponding centers, is the
same as the number of examples.

Our derivation shows that the type of basis function depends on the specific
a priori assumption of smoothness. Depending on it, we obtain the Gaussian
G(r) = e — (rlc)?, the well-known “thin plate spline” G(r) = r?In r, and other
specific functions, radial and not. As observed by Broomhead and Lowe [14] in
the radial case, a superposition of functions like Eq. (1) is equivalent to a net-
work of the type shown in Figure 5. The interpretation of Eq. (2) is simple: In
the 2D case, for instance, the surface is approximated by the superposition of,
say, several 2D Gaussian distributions, each centered on one of the data points.

The network associated with Eg. (2) can be made more general in terms of the
following extension:

£ = 3 eaGllx = ) + P00, ©

where the parameters t., which we call “centers,” and the coefficients c, are un-
known and are, in general, much fewer than the data points (» < N). The norm
is a weighted norm:

”X - tu)uz = (X - ta)TWTW(X - t“)’ (4)
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|

Figure 5. A Hypersr network equivalent to a module for approximating a scalar
function of three variables from sparse and noisy data. The data, a set of points
where the value of the function is known, can be considered as examples to be used
during learning. The hidden units evaluate the function G(x;t,), and a fixed, non-
linear, invertible function may be present after the summation. The units are, in
general, fewer than the number of examples. The parameters that are determined
during learning are the coefficients c,, the centers t,, and the norm-weights W. In
the radial case, G = G(|x — t,|f) and the hidden units simply compute the radial
basis functions G at the “centers” t,. The radial basis functions may be regarded as
matching the input vectors against the “templates” or “prototypes” that correspond
to the centers (consider, for instance, a radial Gaussian around its center, which is
a point in the n-dimensional space of inputs). There may also be connections com-
puting the polynomial term of three constant and linear terms (the dotted lines in
the figure) that may be expected in most cases.

where W is an unknown square matrix and the superscript 7 indicates the trans-
pose. In the simple case of diagonal W, the diagonal elements w; assign a specific
weight to each input coordinate, determining, in fact, the units of measure and
the importance of each feature (the matrix W is especially important in cases in
which the input features are of a different type and their relative importance is
unknown). Equation (3) can be implemented by the network of Figure 5. Notice
that a sigmoid function at the output may be sometimes useful without increas-
ing the complexity of the system (see Poggio and Girosi [8]). Notice also that
there could be more than one set of Green’s functions, for instance, a set of multi-
quadrics and a set of Gaussians, each with its own W. Notice that two or more sets
of Gaussians, each with its own (diagonal) W, are equivalent to sets of Gaussians
with their own &’s.

5.1.1. The Learning Equations: Iterative methods of the gradient descent
type can be used to find the optimal values of the various sets of parameters, the
Ca, the w;, and the t,, that minimize an error functional on the set of examples.
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Gradient-descent is probably the simplest approach for attempting to find the
solution to this problem, though, of course, it is not guaranteed to converge.
We define

N
H[f*] = Heow = z A,
with
A=y — f*(X) =y - %caG(Hxi = toffw).

In the stochastic gradient descent method, the values of c,, t,, and W that
minimize H[f*] are regarded as the coordinates of the stable fixed point of the
following stochastic dynamical system:

OH[f*]
“ac

+n.t), a=1...,n

Cqg =

t,= ~w + ua(t), a=1,...,n

a

. OH[f*]
W= w-———aw + Q@),

where n4(t), pa(t), and Q) are the white noise of the zero mean and w is a
parameter. The important quantities—which can be used in more efficient
schemes than gradient descent—are

® for the c,:
OH[f* <
_Bil = —2 S AG(xi - tff), ®)
C i=1
® for the centers ¢,:
OH[f* 2
W - e, 306/ = LW Wex, = t), ©
” i=1
e and for W:
QH[f* LS
a\[zv—] = —4W 3 ca 2 4G (Ixi = tefW) Qe g

where Q. = (%; — to) (Xi — t.)" is a dyadic product and G is the first derivative
of G (for details see Poggio and Girosi [9]).

5.1.2. Interpretation of the Network: The interpretation of the network of
Figure 5 is the following: After learning, the centers of the basis functions are
similar to prototypes, since they are points in the multidimensional input space.
Each unit computes a (weighted) distance of the inputs from its center, i.e.,
a measure of their similarity, and applies to it the radial function. In the case



