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Absf:rad

A general charaelerization of multi-input 1'1Ovcmcnt (!clt'ctioH .

models is given in terms of tl.e Volterra series formalism. Wheil
nonlinearities of order higher than the second arc ncgligibk, an
II-input system can be decomposed into a sd of 2-input systems,
summing lillearly. For a isymmdrical) 2-inpllt system which h;!s
sigllifjcanlnonline:iri~ics only lip 10the second order, (he correlation
modei is its most general expression. if the infinite time average of
the output is taken. Specific obser,,::tions from optornolor expcri-
.nents (e.g. phase invari:IJI('e and contrast freqllcn';y dependence)
can be interpreted in a gene. al way in lerr..s of propertil's of the
Volterra representatiol1.

Introduction

The detection of mo\'~ment by the visual part
of the Centra! Nervous System is an experimeJ1tal1y
established fact. So far input-output experiments have
Icd to some specific models for motion detection.
without embedJing them inio a gen~ral theory. A
general theory would provide a ~et of constraints
concerning the nervous mechanisms responsible for
motion dctectia.1. It would also show to which extent
different specific modcls are equi"alem and by which
experiments a class of modeis is characterizable.

Theoretical Considerations

We consider the class of movement detp.ction
models which have n inputs and i output; each input
is sensitive to the instantaneous light intensity. A
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Fig. 1. Scheme of a nonlinear II-input. one-output system

rather general representation of this class of modcls
can be given by an extension of the Volterra series ',0
multi-input sy:>tems.For such a system, as represented
in Fig. I, the Volterra expression is

co n +co +co j

y(t)=go+ L L J... J dt] ...dtj TI Xir(t-tr)
j=] i"...,i) - 00 - co r= t

. gi:,...,ij(tl ... t)
III ."

=00+ L .f dt.Xi(t-tt)r/;(-r:t)
i= I -OX>

(I)

n +ox> + ox'

+ L J J dttdt2xj(t-Tt)Xj(t-tz)g,lr:t,T2)
i,j -co -.co

+"'.

In Eg. (I) the Xi(t) represent the input stimuli and yu)
the outJ:)ut of the system. This extension folio\Vs from (in
application oftl1(: methods developed by Wiener (1958)
or Lec and Schetz:cli (! 9GW .

-----
I In Eq. (11 the lerms in the seri:.:s expansion with different

order U) an: nct onlj;)~()n:il funclionals when the Xi(l} represent
white Gaussian prOl'essc~. It is easy tcorewrile Eq. (11 as a series
of orthogonal functionals. following the method describcG by
Wiener (1958;. One obtains

with

"., .

y(I)= L Fj[g',X,(c).X2(l), ...,x"U)]
j=O

Fo= go
" +".,

Fl' = L .f d!Oi(!) Xi(I-!)
;=I -.,
" + '" +'"

Fz=l..f J (htd!2Xi(I-',)Xj(t--T2)g:j(rl"2)
i,j -'"

. +00
- Lki J gii("!) d, .

i

This second form is used when thc property of orthogOl~ality ph!ys
an esscntial rolc. as for example in thc experimental dctermination
of the kernels. In this paper it is unimportant which form is chosen.

-- --- -- --
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The Fourier transform of Eq. (0 is
00 n +00 +00

Y(w)=Yob(W)+ L L J ... J ciWI ... dWj-iXi,
j~li1 iJ-00 -a:;

(Wt)'" XiJ(W-WI -"'-Wj-I)

. Gi, iJWI, Wj- I' W- WI -.., -- (J)j- I) (2)
n n +a:;

= (Joc5(w)+ I Xj(w)Gi(w)+ L f dWt Xi(WI)
i=I i.j - 00

'Xj(w-wdGij(Wl,W-WI) +.0..

In this formula we disregard, as throughout the paper,
the normalization factors. The meaning of the symbols
is sclfexplanatory. Useful for the following is the
infinite temporal average of Eg. (t) which is given by

y(t) = F-I [lim Y(f) sincTJl
1-00 J (3)

= F- I [Y(f) D(f)] = Y(O)

where F-I represents the ir;veri'e Fourier transform
. ~ sin n TJ .

and SInC 1 f = ---
f

' with (j)= 2;cJ and T thcnT
averaging pcriod.

Equations.(t) and (2) arc infinite s::ries whcse
complexity increases rapidly withj- the order of non-
linearity - and 1/- the number of inputs. Fortunately
in the study of many physicul systems it is often
possible to ncglect terms of order higher than the
second. Bedrosian, Rice (1971). If nonlincarities of
orcler higher than the second arc negligible in an
II-input system like the one of Fig. I, a decomposition
of the system as exrresscd in Fig. 2 is possible. In
words: An n-inpllt system ha'/ing nonlincarities up to

the second order is equivalent to the sum of (;) two-
input systems (nonlinear up to the second order),
which arc all the possible combinations of the /1
channels, two by two. GcneraliLations to higher
order nonlinearities arc immediate. If an II-input
system has nonlinearities up to the j-th order (/1> j),
it can be decomposed into the linear sum of j-input
systems. In particular, studying /'i-input systems of

iJJJV JI- .Dr.. +tv -+ : It + ...? ??? ?

ly(t) 1 1 1 1

Fig. 2. Schematic represcntation of the dccomposition theor>:IT"
valid for Volterra systcms with nonlinearitic:; up to the second order

-,-.. "-', -". "--,"-",.....

clns [2 (that is, with noniincarities up to the second
order), it is enough to consider 2-input systems of
class [2. In general 2-input systems are represented by

roo +00

y(t)=go+ J 91(t)Xt(t-"t)d"t+ J g2(T)X2(t-"t)dT
-cr; -00

+00 +00

+ J J d"tldT2g11(T!,"t2)Xt(t-"tt)XI(t-T2)
-00 -00

+00 +00

+ J J dtld"t2g22(TI,"t2)X2(t-Tl)X2(t-t2)
-00 -00

+00 +00

+ J .f d"tldT2g!2(TI,"t2)XI(t-tt)X2(t-"t2)
-00 -00

+ ... (4)

where gi"2(T\.Tl)=gl2(r\, "t2)+g21(T2,TI)' Higher order
kernels arc not explicitely given by Eg. (4).

Equation (4) seems to represent the essential
features of the few models for movement detcction
which have beeil proposed, as for instance thc simple
scheme outlined by Barlow and Levick (1965), for the
rabbit retina.

Marmarelis and McCann (1973) have recently
studied movement dCICction in the l1y hy recording
from class II ncurons of the visual ganglia. They
determined thc kernels q in Eq. (4) and found that
nonlinearitics higher than the second ordcr do not
contribute significantly, dcspite the fact that they
have uscd a broad range of light modulation. Thcy
also ciaim that the large field response of the movement
detcction units constitutes a linear summation of
2-input systcms2.

At this point, it seems il1'portant to clarify the
rclationship between Eg. (4) (that is [he class of2-input
systems) and the correlation lllode: of mov~ll1ent
detection in insects. This model is the only one which
has been formulated in mathematical terms and has
!cd to predictions which have becn experimentally
tested and verified, Reichardt (1957), Hassenstein
{I959), Reichardt and Varjll (1959), Vatjll (1959),
Rr.::chardt (t 961) und Valjll and Reichardt (1967).
Different ver:.ions of the correlation model were
also proposed in variom contexts by Thorson (1966),
Foster {l971) and Poggio (1972); they all amount to
p~rtieular cases of our formalism.

It is of further intel-cst to clarify particular
properties of the optomolor response of insects in

2 From t[le separation theorem (Fig- 2), it must be true th,,!

thc systcm studicd by Marmarclis and McCann (I <)73)i3 cquivalent
to the lille:ar slil11rna:ion of 2-inplt systcms. but in general with
dirrC'l"('1l/~;al1lpling bases ,1(p, the spacing b,'twccn mtjaccnt inputs.
Thcy seem to imply that the sampling bascs arc the samc: this result
would bc intercsting but se"l1Is to require morc :;pecilic tests.
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terms of the same formalism: this will be dcalt with at a
later stage.

To consider thc elass of correIa tion models 3 from
the point of view of Eq (4), one mLlst in fad apply its
timc ~;veraged version. Thi; can be easily derived
f,-om Eg. (4) and (3) as

y(l) = Y(O)=go + G I(0) XI (0) + G2(0) )(2(0)
+<.0

+ J GII(Wl' -WI} XI (WI) XI (-WI) dWI
-00

+00

+ J G22(WI' -wd X2(wd X2( .-w]) do) I
-00
+00

+ J Gh(Wl, -wI)Xt(wI)X,(-u)i)dwl +"'.
.. 00

In fact the correlation models contain an infinite time
avcrage of the output signal which dearly renects
the experimental conditions under which optomotor
experiments have been usually performed, (stationary
stimulation and measuremcnt of the mean reaction).
The correlation models so fill' proposed are also
functionally symmctric ii' the sense that the reaction
to motion in onc direction is equal and opposite in
sign to the reaction to the same motion in the oppo:;ite
direction. Triis rcnccts the "symmetrization" usually
pcrformed in behavioral optomo~or _experiments,R-R - -
where the qu:mtity measured is -, Rand R2
being the average responses (with sign) to thc same
motions in the two different directions.

The only term in Eq. (5) which actually contains
motion information is the last one. which associates
signal inputs from the two channels. By thc symmetri-
zation of y(l), the direction-indepe1ldellt terms are
eliminated, leaving

+00

y(t)s= J GjdwI' -Wl)XI(Wl)X2(-Wl)c!Wl'
-00

It is easy to prove formally that in order for y(t).;
to be real, Gh.(wI' -W1)= W(Wt) mllst be a transfer
function with a real inverse Fourier transform. There-
--.--.-

3 Thc .;lass or correlation models is defincd by 2 inputs. onc
output. the nonlinear operation cf eorrel;:t:on !an arbItrary numb~r
in parailel, only onc in serics) and linear operations. Typical
realizalions arc Reichardt and Varju's F, FH. DF/-! models. and
Kirsehreld's modcl (1972). A general mathematical representation
or this dass is given. for patterns moving al constant speed by

+00 +00

F(At)= J W(.)S(At-.)tlr= J clwei"""'J.hw).~(w),

when: H' is ti1C overalliransrer function or Ihe systcm. S thc power

spcelrum or Ihe pattern and 41 = ~; drp designates the angularII'
spacing between adjacent inputs and 1\'the speed or the pattern.

--- - --

fore, thc for:nulalion given by Eu. (6) is completely
eqllim/ent to the dos,\ (?t.correlation IIwdds.

In particular, a periodic pattern cont,.iining a
single spatial period ADand moving at constant speed w
results in

+Ch

Y(tls = J W(w) [c'5(w+ wo)-\' (5(w - wo)] eiw"rdOl
-00

(7)

(5)

. I 2nw F f
.

11

.
W1l1 Wo = ---;--. or a .unctlOna y symmetncsystem,

AO

W(w) is odd and imaginary and Icads to the interference
. . 2nLlm .

I
.

term S1\1woLf1= S111--~" II t 1e assumrtlon of
/'1\

functionai symmetry is dropped, the term all the right-
hand side of Eq. (7) becomcs

with
A(wo) cos woLlt - B(mo) sinwoLlt

A(w) = iRe 11>(w)

B(w) =t 1m W(w) .

(8)

On the other hand, if the reaction is not symmetrized,
the other teo'lnSin Eg. (5)are supr:rimposcd upon fq. (8).
For instance, one can measure .

R-R .2nL1m
= - B«(!)o) SIl1 ---;--~-

2 AO

the usual optomotor reaction, or

(9)

R+ R 2nA (t>
--~ = cons!. + F(wo) + A(wo) cas .--~,,-,- (10)

~ ~

(6)

which represents the reaction difTerei1ceto progressive
and regressive pattern motion (see, for instance
Reichardt, 1973).In Eg. (10) the dircction-ind~pendent
terms arc not elimiuatcd; they arc represented by

2r.LJep
F(wo) and a term modulated by cos -, If the term

/'0

F(wo) is not present..., which is the case for asymmetric
correia tion modc!s (Poggio. t972) - then Eq. (10)
leads to zero-crossings of the reaction when
. ' 4
),= ,-Alp, 11=0, J, 2...._11+ J

In conclusion every 2-input system is - under
symmetrical experimental conditions .- equivalent,
for averaged output, to the correlation model, if
nonlinearities of order higher than the second are
negligible4.

.. 'n Ihis sense thc experimental findings or Marmarelis and
McCann (1973) prove that the correlation mode! exactly describes
the optomotor rcaction or nies in the usual (stationary. symmctric)
optomotor expcriments.

- --- ---
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~)
~

Fig.3. A multiplication mode! for movcment detection. F,H. A
represent linear filters

On the other hand a correlation model without
infinite time average is !JOtin general equivalent to
Eq. (4) (up to the second order): it contains only the
cross-term, and the kernel of the cross term is strongly
limitc:d. Fo;" example. for the multiplicatIon model
given in Fig. 3 the restrictionS is

+00

yL('t, '2) = SA('j) F('t -- '3) H('2 - L3)dL}.--00

In the following we discuss and ciarify in terms of
our formalism the meaning of some important
findings concerning optomotor responses.

a) Experimental evidence from the bectle
C/owplwlllIs-Hassenstein (1959), Reichardt anJ V~lIju
(1959), Varju (i959)- and the fruitOy Drosophila,
Zimmermann (t 973), shows the phase invariance
property implied by the correlation model. In other
wo:'ds, the avcrage optoinotor iesponsc docs not
depend on the relative phases of the spatial Fourier
components of a given pattern moving with constant
speed. From the property of "decomposition" (Fig. 2)
it follows that cvery II-input system, under time
averaging of the output, has the property of phase
it1varian~e if it contains nonlinearities of order not
higher than the second. For higher order nonlinearities,
a~;well as for time depcndent reactions, phase invariance
is not, in ?Jl!lleral,to be expected, as can be seen from
Eq. (2) and (5). Therefore, the phase invai'iance
propcrty depends only UpOl!the order of non!incarities
of the system.

b) Another property of the optomotor reaction
of InSt.:cts to a pt.:riodic pattern containing a singk
Fourier component and moving with cons cant speed,
is that the av.::rage (symmetrized) response depends

Wo W
upon thc frequency -;:,--- = -1--' rather than upon the

L.n 1'-0

angular vcloci ty w, G6tz (t 964,1972), Eckert (1973).

S This condition seems nGt to he rullilled by the crosskernel
experimental!y obtained by Marmarclis and McCann (1973).

Mathematically this can be expressed by

R(wo. Ao)= T(wo) [V'o). (12)

From Eq. (2), it '.:an be derived that the average
symmetrized reaction of an n-input system (with
inputs equally spaced by LIcp)to a single wavelength
periodic pattern, moving at constant speed, is given,
in general, by

- ~ ' )
. 2nAcp

y(t) =-=L...C,,\wo.. S111 It -y--'n 0
(13)

whcre N depends upon the number of inputs alld the
degree of nonlinearity. Clearly, for Eq. (13) to satisfy
Eg. (12), the following must hold,

C,,(Wo)= c"c(wo) for alln , (14)

I I)

'",hich constitutes a strong constraint upon the various
interactions. The mcaning of ElJ.(t 4) for a system of
class [2 is that the interactions between different
channcls lead to the same frequency dependence,
apart from constant factors.

Furthermore we note that the
of an il-input system to the same
patterns contains no contributions
of odd ordei'.

Another interesting result is that nonlinearities
can introduce into Eq. (13) artificial sampling intervals
greater than the ones physically present in the system.
For instance. in a two-input system nonlinearities
of order higher than the second can worsen the reso-
lution seL by the sampling theorem, but of course
never improve it6.

;lverag~ reaction
kind of periodic
from the kernels

Conclusions

The Volterra series, as given here in Eq. (I),
describes the large class of nonligcar, n-input, I-out-
put systems, which are time invariant, have a finite
memo!'y and whose inpuj<;and outputs are bounded.
Clearly this formalism c~nnot specify in any way the
structural realization of a given system, but can
r;ompletely characterize the meaning of an input-
output experiment, providing a general and synthetic
language for a functioJidl description of the system
properties.

. In order to describe the systcm by means of the
Volterra series from input-output experiments, one
can actually determine Ihe kernels, which has been
--- ._._-

" (n the case of a 2-input systcm, a fourth order nonlincarity
liuJrp

gcnerales terms containing sin 2 ..-X~ ; thercfore, in yelleral even
a 2-input sy~tem is not ractori7~ble in the sense of Ec:.(12).

- - - --- - -
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done for instance for the movemcnt cctcciion system
of the ny. On the othcr hund it is also possiblc to
derive from functional properties of the systcm, like
phase invariance ar.d contrast frequcncy depelJdcnce.
general conclusions COnCl;!!ling the ~ystcm structure
in terms of the Voltcrra rep:"cscntation. From this
!atler point of view tbe Volkrra formalism is' of
cours~ not limited to thc problem cf movemcnt detce-
(jon but ~ccms also (0 provide a general mcthod of
characterizing the muin functional properties of
other neural mcchanisms.

We Wt'uld like to tl1<lnk Mr. l'. Buchner, Dr. K. Kirschfeld,
Mr. B. Pid, 'vIr. Ch. Wehrldll1 ""d eS[1eciailyDr. K. G. Gotz for
critical relTI<irks.Thanks arc also dm: to Dr. B Rosser for reading ,11:0
to M:s. J. G::iss for lyring the English mallllseripl.
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