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Abstract

A peneral characierization of multi-input movement detection

models is given in terms ef the Vollerra series formalism. When
nonlincaritics of order higher thian the second are negligible, an
n-input system can be decomposed into a set of 2-input systems,
summing lincarly. For a {(symmetrical) 2-input system which has
significant nonlincaritics only up to the second order, the correlation
modei is its most general expression, if the infinite time average of
the output is taken. Specific observations from optomotor experi-
nents (e.e. piase invariance and contrast frequency dependence)
can be interpreted in a gene.al way in terras of properties of the
Volterra representation,

Introduction

The detection of movement by the visual part
of the Central Nervous System is an experimentally
established fact. So far input-output experiments have
led to some specific models for motion detection,
without embedding them inio a general theory. A
general theory would provide a set of constraints
concerning the nervous mechanisms responsible for
motion detection. It would also show to which extent
different specific models are cquivalent and by which
experiments a class of models 1s characterizable.

Theoretical Considerations

We consider the class of movement detection
models which have n inputs and i output; cach input
is sensitive to the instantancous light intensity. A
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Fig. I. Schemc of a nonlincar n-input, one-output svstem
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rather general representation of this class of models
can be given by an extension of the Velteria series o
multi-input systems. For such a system, as represented
in Fig. 1, the Volterra cxpression is
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In Eq. (1) the x;(1) represent the input stimuli and yir)
the output of the system. This exteasion foliows from an
application of the methods developed by Wiener (1558)
or Lee and Schetzen (1965)".

'In Eq.(1) the terms in the series expansion with different
order (y} are not orihoponal functionals when the x{t) represent
white Gaussian processcs. I is casy to rewrite Eq. (1) as a series
of orthogonal functionals, following the method described by
Wicner (1958). One obtains
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This second form is used when the property of orthegonality plays
an essential role, as for example in the experimental determination
of the kernels. In this paper it is unimportant which form is choscn.
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The Fourier transform of Eq. (1) is
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In this formula we disregard. as throughout the paper,
the normalization factors. The meaning of the symbols
is selfexplanatory. Useful for the following is the
infinite temporal average of Eq. (1) which is given by

F,:F"[?]_i_.m Y(f)sinch}
=F7'[Y(f)o(f}] = Y(0)
where F7 ! represents the inverse Fourier transform

and sinc Tf= w2l with w=2x=f and T the
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averaging period.

Equations (1) and (2) are infinite series whose
complexity increases rapidly with j— the order of nen-
linearity — and n— the number of inputs. Fortunately
in the study of many physical systems it is often
possible to ncgleet terms of order higher than the
sccond, Bedrosian, Rice (1971). If nonlincaritics of
order higher thun the sccond are negligible in an
n-input system like the one of Fig. {, a decomposition
of the system as expressed in Fig. 2 is possible. In
words: An n-input system having nonlincaritics up to

. . - {1
the second order is cquivalent to the sum of (2) two-

input systems (nonlinear up to the second order),
which are all the possible combinations of the n
channels, two by two. Generalizations to higher
order nonlinearitics are immediate. If an n-input
system has nonlinearities up to the j-th order (n>)),
it can be decomposed into the lincar sum of j-inpui
systems. In particular, studying s-input systems of

[ l

Fig. 2. Schematic representation of the decomposition theoram,
valid for Volterra systems with nonlinearities up to the second order
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cless I? {that is, with nonlincarities up to the second
order), it is enough to consider 2-input systems of
class I*. In general 2-input systems are represented by
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where g5 (1. 1) = 0,21y, T2)+ g21(12, 7,). Higher order
kernels are not explicitely given by Eq. (4).

Equation (4) seems to represent the essential
features of the few models for movement detection
which have been proposed. as for instance the simple
scheme outlined by Barlow and Levick (1963), for the
rabbit retina.

Marmarelis and McCann (1973) have recently
studied movement detection in the {ly by recording
from class I1 ncurons of the visual ganglia. They
determined the kernels ¢ in Eq.(4) and found that
nonlinearities higher than the second order do not
contribute significantly, despite the fact that they
have used a broad range of light modulatien. They
also ciaim that the large field response of the movement
detection units censtitutes a lincar summation of
2-input systems?.

At this poini, it seems important to clarify the
rclationship between Eq. (4) (that is the class of 2-input
systems) and the cerrelation modei of movament
detection in insects. This model is the only one which
has been formuiated in mathematical terms and has
led to predictions which have been experimentally
tesied and verified, Recichardt (1957), Hassenstein
(1959), Reichardt and Varju (1959), Varju (1959),
Reichardt (1961) aud Varjd and Reichardt (1967).
Different versiens of the correlation model were
also proposed in various contexts by Thorson (1966),
Foster (1971) and Poggio (1972); they all amount to
particular cases ol our formalism.

It is of further interest to clarify particular
properties of the optemolor response of insects in
© 2 From the separation theorem (Fig. 2), it must be true that
the system studicd by Marmarclis and McCann (1973) i3 equivalent
io the linear summation of 2-input systems, but in geperal with
different sampling bases A, the spacing between adjacent inputs.
They scem to imply that the sampling bases are the same: this result
would be interesting but seems o require more specific tests.
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terms of the same formalism: this will be dealt withata
later stage.

To consider the class of correlation modcls® from
the peint of view of Eq. (4). one must in fact apply its
time averaged version. This can be easily derived
from Lqg. (4) and (3) as
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In fact the corrclation models contain an infinite time
average of the output signal which clearly reflects
the experimental conditions under which optomotor
experiments have been usually performed, {stationary
stimulation and measurement of the mean reaction).
The correlation models so far proposed are also
functionally symmetric 11> the sense that the reaction
to motion in onc dircction is equal and cpposite in
sign to the reaction to the same motion in the opposite
direction, Thnis reflects the “synunctrization™ usually
performed in behavioral optomotor experiments,

. . R—-R = -
where the quantity measured is ety R and R

being the average responses (with sign) to the same
motions in the two dilferent directions.

The only term in Eq.{5) which actually contains
motion information is the last one, which associates
signal inputs from the two channels. By the symmetri-
zation of y(1), the direction-independent terms are
eliminated, leaving

y@,= _j Gl —0) Xy (@) Xz (o) do; . (6)

It is easy to prove formally that in order for y(1),
to be real, GY, (. —w,)= W(w,) must be a transfer
function with a real inverse Fourier transform. There-

* The class of correlation models is defined by 2 inputs, one
cutput, the nonlinear operation ¢f correlation fan arbitrary number
in parailel, only one in serics) and linear operations. Typical
realizations are Reichardt and Varju's F, FH, DFH models, and
Kirschfeld’s model {1972). A general mathematical representation
of this ciass is given, for patterns moving at consiant speed by

+ @ + @ ” o
Fidy= | W()S(dt—1)di= | dwe*"W(w)Sw),
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where W is the overall transfer function of the system. § the power
4 .
spectrum of the pattern and 41 = —-:‘IE: A designates the angular

spacing between adjacent inputs and w the speed of the pattern.
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fore, the formulation given by Ea. (6) is completely
equivalent to the class of correlation models.

In particular, a periodic pattern containing a
single spatial period 4, and moving at constant speed w
results in

— to -
(o= [ W)+ wp)+dl@—w)] e"da  (7)

. 2w . .
with wy = -=—-. For a functionally symmeltric system,

4o
W(w)is odd and imaginary and leads to the interference
. . 2ndeo . )
term sin oA =sin 6 v If the assumption of
1

functionai symmetry is dropped, the term on ihe right-

~hand side of Eq. (7) becomes

Alwg) cos madr — Blwg) sinm, At (8)
A(w) =1Re W(w)
B(w) =31m W(w).

with

On the other hand, if the reaction is not symmetrized,
the other termsin Eq. (5)are superimposed upon Eq. {8).
For instunce, one can measure

s . i
el EENET B(("-"UJ sin .-_H‘f].(i? (9]

40

R+R ; 2rdq
——\--,;—— = const. + Flexg) + Alwg) cos .--—;—--f-- (10}
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which represents the reaction differeince to progressive

and regressive pattern motion (see, for instance

Reichardt, 1973). In Eq. {10) the dircction-independent

terms are nol eliminated; they are represented by
2rnd

F(wg) and a term modulated by cos —--:—(ﬂ. If the term
I3

F(w,) is not present - which is the case for asymmetric

correlation models (Poggic, 1972) — then Eq.(10)

leads to zero-crossings of the reaction when

. N 0. 1.2
A= W) Ap. n=0,1,2....

In conclusion every 2-input system is — under
symmetrical experimental conditions -- equivalent,
for averaged output, to the correlation model, if
nonlinearities of order higher than the second are
negligible®.

* In this sense the experimental findings of Marmarelis and

McCann (1973) prove that the corrclation mode! exactly describes
the optomotor reaction of flies in the usual (stationary, symmetric)
optomotor experiments.
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Fig. 3. A multiplication model for movement detection. F, I, A
represent linear fiiters

On the other hand a correlation model without
infinite time average is not in general equivalent to
Eq. {4) (up to the second order): it contains only the
cross-term. and the kernel of the cross term is strongly
Imited. For example. for the multiplicition model
given in Fig. 3 the restriction® is

)= e

[n the following we discuss and clarify in terms of
our formalism the meaning of some important
findings concerning oplomotor responses.

a) Experimental  evidence  from  the  beetle
("hu-nphunm Hassenstein (1959), Reichardt and Varju
(19539), Varju (1959) - and the fruitlly Drosophila,
Zimmermann (1973), shows the phase iavariance
property impiicd by the correlation model. [n other
words, the average optomotor responsc does not
depend on the relative phases of the spatial Fourier
components of a given pattern moving with constant
speed. From the property of “decomposition™ (Fig. 2)
it follows that every n-input system, under time
averaging of the output, has the property of phase
invariance if it contains nonlinearities of order not
higher than the second. For higher order nonlincarities,
aswellas for time dependent reactions, phase invariance
is not, in general, to be expected, as can be seen from
Ea.(2) and (5). Therefore, the phase invasiance
property depends only upon the erder of nonlinearities
of the system.

b) Another property of the optoinotor reaction
of msects to a periodic pattern containing a single
Fourier component and moving with constant speed,
is that the average [symrnctrizcd) response depends

972t T2 JF(e =) Hz, =) dey. 1)

upon the Inqucucy - , rather than upon the
2

":0
ang,uldr velocity w, Gotz (1964, 1972), Eckert (1973).

“This condition scems net to be fulfilled by the crosskernel
cxpt.rlmuna]ly obtained by Marmarelis and McCann (1973),
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Mathematically this can be expressed by

R(wgy. o) =T (12)

From Eq.(2), it can be derived that the average
symmetrized reaction of an n-input system (with
inputs equally spaced by 4¢) to a single wavelength
periodic pattern, moving at constant speed, is given,
in general, by

(o) I(4o) -

(13)

N
— A 2
F0 = 3 cafo)sinn 242
n ’10
where N depends upon the number of inputs and the
degree of nonlinearity. Clearly, for Eq. (13) to satisfy
Eq. (12), the following must hold,

for all n, (14)

Crl{r’uﬂ} = ('“(_'{(Uo)

which constitutes a strong constraint upon the various
interactions. The meaning of Eq. (14) for a svstem of
class ? is that the interactions between different
channels lead to the same frequency dependence,
apart from coanstant factors.

Furthermore we note that the average reaction
of an a-input system to the same kind of periodic
patterns contains no contributions [rom the kernels
of odd order.

Another interesting result is that nonlinearities
can introduce inte Lq. (13) artificial sampling intervals
greater than the ones physically present in the system.
For instance, in a two-input system nonlinearities
of order higher than the second can worsen the reso-
lution set by the sampling theorem, but of course
never improve it

Conclusions

The Volterra series, as given here in Eq. (i),
describes the large class of nonlincar, n-input, (-out-
put sysiems, which are tme invariant, have a finite
memeoery and whose inputs and outputs are bounded.
Clearly this formalism cannot specily in any way the .
structural realization of a given system, but can
completely characterize the meaning of an input-
output experiment, providing a general and synthctic
language for a functional description of the system
nroperties,

In order to describe the system by means .of the
Volterra serics from input-output cxperiments, one
can df[l.ld“y determine the kernels, which has been

"6 In the case of a 2- input system, a fourth order nonlincarity
o . Qudgp
generales terms containing sin 2 S
0
2-input system is not factonzable in the sense of Eq. (12).

; therefore, in general even
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done for instance for the movement detection system
of the fly. On the other hand it is also possible to
derive from functional properties of the sysiem, like
phase invariance and contrast [requency depeadence,
general conclusions concerning the system structure
in terms of the Volterra representation. From this
latter point of view the Volierra formalism is: of
course not limited to the problem of movement detece-
tion bul scems also to provide a general metiod of
characlerizing the main functional properties  of
other neural mechanisms.

We weuld like to thank Mr. i Buchner, Dr. K. Kirschield,
Mr. 5. Pick, Mr. Ch. Wehrhahn and especiaily Dr. K G, Gétz for
critical remarks. Thanks are also due to Dr. B Rosser for reading and
to Mrs. I. Geiss for iyping the English manuscript.
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