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Abstract

The theory presented here describes the visual orientation
behavior of fixed flying insects (the fly Musca domestica) in the
presence of elementary patterns. The theory, which is based on a
number of experimental results, Reichardt (1973), is a phenomeno-
logical one whose main purpose is to provide an organizational
framework for treating a complex phenomenon without the need of
detailed assumptions about the neural mechanisms actually
involved.

A simple hypothesis concerning the basic structure of the
pattern fixation process leads to an equivalent stochastic equation
of the Langevin type, which can be linearized for simple single-stripe
panoramas. A critical experiment supports these theoretical assump-
tions. In addition, the effect on pattern fixation behavior of adding
contrast noise to the background of the panorama, is quantitatively
predicted by the theory.

In the more general case of a panorama consisting of many
vertical stripes, the Fokker-Planck equation associated with the
Langevin equation, no longer linear, is solved. Making use of an
experimentally proven "superposition principle", the stationary
pattern fixation behavior of the fly in an arbitrary panorama consist-
ing of a collection of vertical stripes is predicted. In this context,
concepts like pseudo-invariance and phase-transition can be applied
to the insects orientation behavior. The theory presented here seems
to contain rich classification properties, which might provide the
foundations for an understanding of more complex pattern discrimi-
nation processes.

Possible extensions of the theory, as well as some similarities
to human eye fixation. are also discussed.

1.0. Introduction

Behavioral investigations of visual detection, fixa-
tionand discrimination of elementary patterns by
fixed flying flies, which have been recently undertaken
in our laboratory, have led to quantitative results
whose analysis and interpretation has been given by
one of us; Reichardt (1973)1.The purpose of this paper
is to outline a theoretical approach to the analysis
of the processes involved in the orientation (fixation)
of the fly towards elementary patterns in the presence
and absence of contrast noise.

1 Preliminary results have been published in the following
papers: Reichardt and Wenking (1969): Reichardt (1969a), (1970),
(I971a), (l97Ib).
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As a first step we correlate the analysis neither with
the present knowledge concerning the structure and
function of the nervous elements in the optical ganglia
or midbrain of the fly nor with the model describing
movement perception [see for instance Reichardt
(1961)], but rather prefer a phenomenological
approach for the interpretation and analysis of the
experimental data. In this approach, we shall take
into account some of the more basic experimental
findings and formulate an equivalent mathematical
structure from which we deduce and interpret the
behavior of the fly under more complex stimulus
conditions.

2.0. Conception and Methods

The experimental set-up which has been used in order to
measure the behavior of fixed flying flies under closed-loop condi-
tions (interaction between the fly and its optical surroundings) has
already been described, Reichardt (1973), but is presented here
again in Fig. 1. Its main components are: a) a flight-torque com-
pensator, b) an analog electronic device w~ich controls the motor
speed according to the torque signal generated by the fly, c) a
servomotor which drives a patterned cylindrical panorama.

Female, wild-type, red-eyed Musca domestica from a laboratory
stock were used as test-flies for these investigations.

During the experiments, a test-fly, with head fixed to the
thorax is suspended from the compensator on the axis of the
cylindrical panorama. The panorama, which carries on its inner
surface the individual test patterns, is homogeneously illuminated
with a brightness, standard for all the experiments described here,
of about 5500 Apostilb (1 Apostilb = 10-4 Lambert).

For a fly suspended from the compensator, the six degrees of
freedom (three for translations and three for rotations) are blocked.
However the coupling ofthe visual environment to the output of the
torque compensator simulates one degree of freedom, namely the
rotation around the fly's vertical axis in horizontal flight. The
equivalent behavior of a fly under free flight conditions would be a
rotation around its vertical axis with respect to an optical en-
vironment positioned sufficiently distant to the fly so that the
translational flight components do not contribute to displacements
of the imaged surroundings on the retinae of the two compound
eyes. .

The electronic analog device connecting the compensator
output, whose voltage is proportional to the instantaneous torque
signal generated by the fly, to the servomotor system. simulates the
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Fig. 1. Simplified diagram of the experimental set-up (closed loop system). A test fly, suspended from the torque compensator, is enabled
to control the position of a patterned panorama by its own torque signal. The transfer conditions of the compensator, the motor coupling
block and the servomotor give an approximation of the dynamics of the equivalent free-flight conditions. The instantaneous position of

the panorama is signaled from a ring potentiometer and evaluated by a computer. For more details, see the text

free flight dynamics or, more exactly, a simple approximation of it
expressed by the equation

e1ji + k1jJ = -D(t),

where tp is the angular position of the cylindrical panorama, 1jJand 1ji
represent the first and second time derivatives, e is the moment of
inertia of the fly around its vertical axis {measured as about
1.5 x 10- 3 [gr. cm2]} and k the friction experienced by the fly under
rotation around its vertical axis in free flight. The exact vaJue of k
for free'flight conditions is not yet known. In our experiments k is
therefore treated as a parameter ranging from 0.375 to 0.028
[gr. cm2 sec:- I]. Equation (1) defines the "coupling~ of the fly to the
panorama, which depends upon the parameters e and k. Different
degrees of coupling, which result in different asymptotic values of

the panorama speed for a given constant value of the torque D, can

be expressed, since e is a constant, by the single parameter ~ [see].k

The speed is in fact proportional to this value: for example, a con-
stant torque signal of 1 [dyne. em] tesults in an asymptotic angular

speed of 152.7 [degrees. see-I] when ~ = 4. 10~3 [see].k

The details of the torque compensator have already been
described, fermi and Reichardt (1963); Gotz (1964). The input
(torque) - output (voltage) transfer response of the compensator,

-- -~

(I)

expressed as its amplitude-frequency and phase-frequency charac-
teristics, is flat over the low frequency range. The relative amplitude
decreases by - 3 db at a frequency of about 60 Hz. The frequency
spectrum of the torque signal generated by a fly, measured in closed

loop from the compensator output, contains its significant power
in the frequency range from zero to 10 Hz. Since the compensator
transfer response is flat up to 10 Hz and exhibits a maximum phase
angle of only 5° at this frequency, it is logical to conclude that the

output of the torque-compensator is proportional to the torque
signal generated by a fixed flying test-fly.

The electronic analog device has the following transfer function,
corresponding to Eq. (1)

I 1

L(i2nf)= 8'- Uk '
i27tf+~ e

(2)

where f is the frequency.
Since the transfer function of the servomotor drive system

(excited by 400 Hz) is flat from zero to about 20 Hz and the input
spectrum cannot be wider than the torque spectrum because of the
lowpass filter properties of the interconnecting electronic analog
device, no signal distortion is introduced by the system. As a
consequence, the complete transfer function of the experimental
set-up, consisting of the compensator, the analog electronics and
the servomotor drive system, reduces to the linear transfer function
of Eq. (2); electronic noise and drifts are negligible.
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The instantaneous angular position 1p(t) of the pattern is
signaled by a ring-potentiometer mounted on the servomotor
shaft, which also carries the rotating cylindrical panorama; the
resulting displacement signal is sampled by a multichannel analyser
(Didac 800, Deutsche Intertechnique) which calculates and plots
amplitude histograms of the pattern position. Further methods of
analysis and other modes of operation of the device will be described
in the text.

A diagram describing the information flow between
the fly and its optical surroundings under our experi-
mental conditions is presented in Fig. 2 in the form
of a black box scheme. The mechanical-electronic
device which couples the fly to its visual surroundings
is given by the linear filter L, whose transfer properties
are simply expressed in Eq. (2). F indicates the non-
linear, generally time-varying, black box which re-
presents the fixed, flying test-fly. The output of the
box L is connected to the input of the box F since
the optical surroundings of the fly strongly influence
its behavior.

~ F DIt)

Fig. 2. The overall information flow diagram of the experimental
set-up described in Fig. I. The functional properties of the fly,
observed under our experimental conditions, are represented by the
black box F. L stands for the transfer properties of the analog
electronics which simulates free flight conditions (rotation around
the fly's vertical axis). The test fly perceives an angular speed tjJ(t)

of the panorama and generates a torque signal D(t)

3.0. Results

In the preceding chapter the transfer function of
the box L has been specified. So far we have not given
any specification concerning the box F, which describes
the behavior of the fly during the experiments. There-
fore it appears necessary to summarise here some of
the experimental results described by Reichardt (1973)
from which we shall derive the key properties for the
characterization of F.

3.1. Fixation of a Single Black Stripe

When a test-fly is coupled to the white, homo-
geneously illuminated panorama which carries a
single black, vertically oriented stripe, the panorama
is rotated by the fly until the stripe has reached the
average position 1p==0°, about which it oscillatesin a
random-like motion. This position is characterized by
the fly's direction of flight; therefore we may state
IS'
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Fig. 3. Position histograms, obtained from a test fly during the
stationary phase of fixation of a single, black, vertically oriented
stripe of 5° angular width. The parameter of the experiment is the

I
. e

coup mg constant- [see]k

that the fly is fixating the stripe. Fixation of the stripe
takes place irrespective of the panorama's initial
position. Fig. 3 shows a sequence of histograms
describing fixation for different coupling-in conditions,

e
expressed by the parameter T' These histograms
represent the probability of the stripe's position. As can
be easily seen from Fig. 3, the half-width of these
histograms increases for increasing coupling. A first
possible explanation for this finding is that with
increasing coupling the relative velocity of the stripe
increases, which must finally lead to a decrease in the
fly's ability to perceive its motion.

3.2. Elementary Processes Involved in the Fixation
Behavior

In a series of experiments it has been shown by
Reichardt (1973)that the fixation behavior rests on two
observations and a simple fact. The first observation is
that a test-fly generates a symmetric stochastic torque
signal N(t) if the panorama is not coupled to the fly
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Fig.4a. Histogram of the torque fluctuation generated by a fly in
a contrastless, uniformly illuminated environment (open loop).
As shown by a statistical test using the coefficients of "skewness"
and "excess", the histogram is a good approximation to a gaussian
distribution. The (12of the histogram determines the power of the

zero-mean torque fluctuation
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Fig. 4b. Normalized autocorrelation function of the open loop
torque fluctuation whose histogram is shown in Fig. 4a. The auto-
correlation function is very well approximated by the exponential

expression S ,{'r) = e-yltl. In this case '/ = 1.9[see-I]
S""",(O)

(open loop condition). A typical example of this
process is given in Fig. 4a m the form of a torque
histogram, which turns out to be, in very good
approximation, gaussian. The corresponding nor-
malized autocorrelation function, shown in Fig.4b,

is approximately given by e- ,:. It declines to ~ fore
1

TO=0.526 [see]; therefore - =y= 1.9[see-I]. The
To

second observation clearly goes beyond the well
known findings for the optomotor response described
in insects [for a review see Reichardt (1969b)]; namely,
the strength of the optomotor response for progressive

- --- --- ---
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Fig. 5. Histograms of the torque output of a test fly in open loop
when a vertical black stripe of 10 angular width is oscillating sym-
metrically about the angular positions +900 (upper) and -900
(lower). The stripe is driven by a stochastic process with a maximum
amplitude of :t 50 and a high-frequency cut-off at -5 Hz. The
difference between the mean values of the distributions is highly

significant

stripe motion (from the front of one of the compound
eyes to the back) is stronger than for regressive stripe
motion (from back to front). This is shown in Fig. 5,
where we present two torque histograms recorded
under open loop conditions with symmetric random
stripe-motions about the positions !Po= :t 90°. The
centres of gravity of the two histograms are sig-
nificantly separated, indicating that under these
conditions the test-fly tries to approach the moving
stripe. We may now state that there is a second type
of torque response, a reaction induced by the motion
of the pattern; this response is an asymmetric one.
The third point is the fact that the fly has two com-
pound eyes with a line of symmetry between the two.
Combining these two observations from open loop
experiments and taking into consideration the sym-
metry line, the fixation process observed under closed
loop conditions can be easily derived: the random
torque signal N(t) elicits a symmetric fluctuation of the
stripe which in turn results in an asymmetric induced
torque response driving the stripe towards the direction
of flight where it is stabilized due to the symmetry
between the two eyes.
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D(t)-N(t)+R(t)

Fig. 6. Equivalent information flow diagram ofthe dynamical model.
The black box F - representing the "fixating fly" - is conceptually
separated into two subsystems: F" associated with the asymmetric
optomotor reaction, and F2' representing the source of the stochastic
torque process. The basic hypothesis implied in the diagram and
discussed in the text is that the optomotor signal R(t) and the noise

process N(t) are independent and additive

We are now in a position to develop the scheme
presented in Fig. 2 into the more detailed one shown
in Fig. 6. In this figure the F-box has been split into
two parts, Fl and F2, according to our knowledge
about the stochastic torque signal N(t) and the induced
torque response R(t). The assumption is made that
N(t) and R(t) are interacting simply by addition. In
the next chapter, experimental evidence supporting
this assumption will be given.

3.3. General Mathematical Description of the Fixation
Process

Reading the dynamical equation of the whole
system from the network diagram in Fig. 6 and taking
into account Eqs. (1) or (2), we obtain the equation

tjj(t) + ~ tiJ(t) = ~ N(t) - ~ Fdtp(t'), tiJ(t')}, (3)

where Fl is a function of the angular position and
velocity of a given pattern describing the induced
reponse of the fly, which must, in principle, be delayed
(t' = t - 8). As has been stated before, N(t), the torque
signal generated by the fly, is a zero-mean random
process, therefore the sign of N(t) in Eq. (3) is not
important. The gaussianity of the recorded histograms
(Fig.4a) suggests the assumption that N(t) is also
gausslan.

The assumptions implied by Eq, (3) are the
following:

a) N is a stationary random process and Fl does
not depend explicitly on the time t.

b) Fl is significantly dependent only upoQ.tp and tiJ.
0 c) Following experimental evidence to be given in

Section 3.4, N does not depend significantly on tp
and tjJ.Therefore we assume that N is characterized
by the open loop torque signal.

Equation (3) is an equation of the generalized
Langevin type, describing the "motion" of our dynamic
system.

Interestingly, the form of Eq. (3) leads to a
straightforward analogy between the fIXation process
described here and the quasi-brownian motion of a
particle in a potential hole. The equivalent of a poten-
tial hole is implied by the experimental fact that the
one-dimensional process tp(t) has a stable equilibrium
point (tp=0). It is obviousthat the analogyshows the
basic probabilistic character of our approach; more-
over it represents a suggestive and intuitive counter-
part of a pure probabilistic description, offering at the
same time a great body of analytic tools applicable
to our problem.

As a matter of fact, if the term Fl describing the
fly's induced response in Eq. (3) is a linear one, the
well-known correlation method makes it easy to find
a complete solution of the problem. If, however, Fl is
nonlinear, considerable difficulties arise. One method
which often enables one to carry out an exact analysis
of problems of this kind is the Fokker-Planck method,
which actually makes use of the quasi-brownian
analogy [see for instance Wax (1954)]. The associated
Fokker-Planck partial differential equation will be
considered later and discussed for some simple cases.

3.4. Experimental Evidence for a Linear Approach

An experiment has been performed in order to test
the form of Eq. (3) and some of its underlying assump-
tions. Moreover the experiment tests the hypothesis
that Fl (tp,tiJ)can be approximated by a linear relation
when a single-stripe pattern is fixated under low
coupling conditions. The latter implies that the
tp,tiJfluctuations are small. Since L is a linear system,
the overall transfer function G(f) of the closed loop
scheme, given in Fig. 6, consequently is a linear one.
Taking into account that N(t) is a random process, the
following relation for the power spectra holds

<!J(f)= No(f) . IG(f)12 (4)

where <!J(f)designates the power spectrum of tp(t)and
No(f) the power spectrum of the noise.

The experimental test consIsts in the application of
an independent zero-mean noise source, during a stripe

fixation test (the coupling amounted to ~

= 8 . 10- 3 sec), whose frequency band covers about
the same range as the torque signal generated by the
fly. The independent noise is added to the output of the
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Fig. 7. The same information flow diagram as'given in Fig. 6 when
artifical torque noise Ni(t) is added to the noise process N(t) generated

by the fly

torque compensator signal, as shown schematically
in Fig. 7. From our experimental conditions it follows
that

No(f) = N(f) + Ni(f).

Substituting No(j) in Eq. (4) and integrating ljJ(f),
it follows that

+00 +00

J ljJ(f)df= J df{N(f)-lG(fW+Ni'IG(fW}. (6)
-00 -00

During the experiment the independent noise ampli-
tude'can be changed. We therefore introduce here an
amplitude scaling factor n, so that Ni(f) = n2Ni,const(f).
Taking into account that

+00

J ljJ(f) df = a2 ,
-00

where a designates the standard deviation of the
gaussian probability distribution of a stripe position
under fixation, we arrive at

with

2 2 + 2 2
a =a0 n ai, const,

+00

a~= J N(f) IG(fW df
-00

and
+00

2 J - 2
ai,const = Ni,const(f) IG(f)1 df.

-00

From Eq. (8a) it follows that

,~-
Va - ao - n. ai,consl.

Therefore, if our assumptions are valid, the linear
relation expressed in Eq. (8b) should be fulfilled in
a stripe fixation experiment.

Figure 8 contains a typical experimental test for
Eq. (8b) under the conditions of low coupling. As
one can see, relation (8b) is very precisely fulfilled.
The result is therefore in accordance with the assump-
tions stated before.

---~

14

/,J'

/~]
1/1

1
~ 12
:J

"i

~ 1:

I 6
4

2

42 6 8 10

r.m.s. amplitude [rei. units]

(5) Fig. 8. Typical experimental relationship between the standard
deviations eTof the fixation histogram and the power (in arbitrary
units) of the artificial gaussian noise injected additively into the
closed loop (see Fig. 7). The quantity eTorepresents the standard
deviation of the fixation histogram without artificial noise. The
points are averages taken from five flies; the correlation coefficient
r =0.997. Removing the last point, where the associated histograms
begin to differ from a gaussian, r becomes 0.999. The artificial
gaussian- noise used in this experiment had a flat spectrum up to
15 Hz where a sharp cutoff takes place. Other spectra were used too

and always led to a linear relationship

(7)

3.5. A Linear Approximation

Due to the fact that a test-fly fixates a single black
stripe, we may say that the stripe during the stationary
fixation phase is positioned in an equilibrium state.
This observation in connection with the experiment
reported in Section 3.4 leads to the most obvious
approach to a linearisation of Eq. (3) since it
describes a system in the neighborhood of an (stable)
equilibrium. Without the noise term, the equilibrium
of the system in the phase space is defined by

(8a)

(9)

(10) tpequil. =0; (dtp) = 0 .
dt equil.

(11)

(8b)

As long as tp2 and JiJ2are small enough, which is the.
case for low coupling, the motion of the phase. point,
representing the stripe, is restricted to the neigh-
borhood of the point of equilibrium. Under these
circumstances we may replace Ft {tp(t');JiJ(t')}by its
linear approximation near the equilibrium

Ft {tp(t'); JiJ(t')}~ Ft (0,0) +
( ~Ft )

. tp(t')
tp 0,0

(

oFt
) .JiJ(t').

+ oJiJ 0,0

(12)

- - ---
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Taking into account that Fl (0,0) = 0 (equilibrium) and
defining

(oFl

)011' 0.0= oc

we arrive at

(
oFl

) = r
and 01iJ 0,0

Fl (11',1iJ)~ octp(t') + r1iJ(t'). (14a)

Taking into consideration this linearisation, we may
now reformulate Eq. (3);

tji(t)+ ~ 1iJ(t)= ~ N(t) - ~. tp(t')- ~ 1iJ(t'). (15)8 8 8 8

In this connection one has to be aware of the fact that
the expression given in Eq. (14a), and consequently in
(15), is the simplest linear form, neglecting the 11'-
dependence of r as well as the 1iJ-dependenceof oc.The
linearisation fails when the stripe does not move
relative to the compound eyes of the fly.

It might be interesting to note that Eq. (14a) can
be considered a particular case (for the neighborhood
of 11'=0) of the more general formula

Fl (11',1iJ)= r1iJ - D(tp), (14b)

where the difference between the progressive and the
regressive induced torque response is now described
by the experimentally given function D(tp) for the
tp-range -rr<tp~ +rr. Formally, Eq. (14b) can then
be rewritten as

Fl (11',1iJ)= r1iJ+ o~ U(tp),

where D(tp)is supposed to be derived from a potential
U(tp). It is clear that the term octp(t') in Eq. (14a)
describes the linear range of D(tp) between about
- 20° and + 20°. For this region, Eq. (14b) reduces to

. (14a). Both functions, D(tp)and U(tp),are presented in
Fig. 9.

The standard linearisation applied here is typical
for non-stochastic processes. The fact, however, that
we are dealing with stochastic processes justifies the
procedure also from the point of view of statistical
linearisation; Kasakov (1961).

Another argument speaking in favour of a linear
approximation comes from the experimental evidence;
namely that the distributions (histograms) characteriz-
ing the closed-loop fluctuations are quite well ap-
proximable by normal distributions when the coupling
is low. In fact it is well known that if one injects a
normal process into a closed-loop system containing
a nonlinear element, the variables of the system, in
general, fluctuate in a nongaussian manner. Therefore,

(14c)

(13)

-180 -135 -90 -45 0 +45 +90 +135 +180
-Ij{, [degreel--

Fig. 9a. The asymmetric part of the torque induced by a moving
stripe as a function of the angular position 11'0;average of III single
measurements. In these measurements the flies were coupled

(~ = 12.1O-3).to a panorama containing a black vertical stripe
of width 5° which was elastically bound to each angular position 11'0'
The average rotation speed was 10/sec, too low to produce any
significant reaction. The experiment measures D(lp)= - ~
where the bar indicates an average for each 11'with respect to the
actual closed loop zero-mean speed distribution. It is natural to
approximate FI (11',1jJ) as F, (11',1jJ);;;;rtjJ - D(lp) when the speed
fluctuations around 1jJ= 0 are smalI- i.e. for low coupling conditions.
When ;p;. is also smalI, as in the case of single stripe patterns, the
motion of the stripes is confined to the linear region of D(lp), and

then F1(1p,tjJ);;;;rtjJ +OtlI'

Fig. 9b. The potential profile U(lp) for single vertical stripes obtained
from the experimental D(lp) (Fig. 9a) according to the usual definition
of D(lp) = - grad U(lp). The potential always exists since D(lp) is a
one dimensional function. The minima of U(lp) give the stable

fixation positions

we may conclude that the linearized description of the
fixation process is a reasonable one.

Equation (15) is a linear equation of the Langevin
type, which describes the stochastic process tp(t).Since
N(t) is gaussian tp(t) also must be a normal random
process. It follows from Eq. (15) that the power
spectrum ([>(f)of tp(t) is given by the expression

([>(f)=
1 ~

-. N(f)82

1

- 4rr2p + i2rrf
{
~ + ~e-i27tf'

}
+ ~e-i27tf'

1

2 '

888

(16a)

-- --~
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where R(f) again designates the power spectrum of
N(t). Since the process lp(t) is normal, it is completely
determined by its mean and its autocorrelation func-
tion. The autocorrelation Stp,I/,.!'rlcan be obtained
either directly from the inverse Fourier transform of
the power spectrum t:P(f), or by performing the
following convolution operation

1
Stp,tp(-r)= e2 (ST,T*SN,N)' (17a)

where SN,Ndescribes the autocorrelation of the noise
and ST,T the Inverse-Fourier-Transform of the de-
nominator term in Eq. (16a).

Unfortunately it is not possible to obtain, in
general, an analytic expression for ST,T>due to the
finite delay time e. However, in the frame of our
approximation it seems even possible to neglect e for
the case of low couplings between the fly and its
surroundings, see Appendix A. This is also suggested
by the outcome of the experiment described before
(Section 3.4), which implies a negligible delay. In the
following we shall therefore neglect the delay e of the
induced response Fl' Equation (16a) reduces then to

1 -
t:P(f) = fj2' N(f)

I 4n2 j2 + i2nf (~ + ~ )
(X

/

2' (16b)

e e + e

We are now able to develop a straightforward
analyticalexpressionfor ST,T in Eq. (17a).Introducing
the following abbreviations, ,

k r (X l~
b= e + e; a= e; 2nf*=Va-4'
we arrive at

1 _.£.1<1

[

b

]ST,T(-r)= 2ab e 2 cos2nf*.t + 4nf* sin2nf*ltl .
(17b)

ST,T(-r)behaves oscillatory, aperiodic, or overdamped,
according to whether f* is real, zero, or imaginary.

For the second term SN,N in Eq. (17a), which
undergoes convolution with ST,T, the analytical ex-
pression approximating our measurements in open-
loop conditions (see Fig.4b) is given by

SN,N(t) = A e-YI<I .

Under the assumption that the open-loop noise is
representative of the noise process generated by the
fly under closed-loop conditions (see Appendix A),

we are now in a position to determine Stp,tp(t)in
Eq. (17a) by convoluting the expressions for ST T
and SN,N'given in Eqs. (17b) and (19).The result of the
calculation is derived in Appendix B; the special case
1:=0 is given in the next equation

S (0) = 0"2 = A . b + y .
'1','1' e2 . a. b (a+ b. y+ y2)

(20)

(18)

The stationary probability distribution of the stripe
position 1p is, since ip= 0, given by the following
gaussian expression

P(lp)= V 2:0"2 e~ 2'1'(122. (21)

It follows from Eq. (20) that 0"2is proportional to A,
which represents the power of the torque fluctuation
introduced in Eq. (19). On the other hand 0"2 is
inversely related to the parameter a which designates
the slope of the D(lp)-characteristics in the linear
region near 11'= 0, see Fig. 9.

This dependence upon the parameter a clearly
means that fixation is in principle guaranteed only if
the value of a is different from zero. The parameter b
in Eq. (20), which has been specified in Eq. (18),

consists of two terms: The first one ~ represents the

coupling of the fly to the panorama, whereas the

second one ~ designates the symmetric part of thee
torque response induced by the moving pattern. In the
"white" noise approximation (y--++ 00; A -y), 0"2 is
inversely proportional to a and b since A times the
second part of the equation containing a, band y
[see Eq. (20)] reduces to unity. The 0"2dependence
upon b is quite understandable, as it determines the
speed-sensitive open-loop amplification of the entire
control system,

In Fig. 10 a sequence of fixation distributions for
a single stripe has been derived from Eqs. (20)and '(21),
taking into account actual values for the parameters
k, A, a, band y. These values are specified in the legend
of the figure. Comparing the calculated distrib~tions
in Fig. 10 with the measured distributions presented in
Fig. 2, one can easily see that Eq. (20)fails, as expected,
at high couplings, where the assumptions under which
the linearisation was derived are no longer valid (see
Appendix A).

In a recent paper, one of us (Reichardt, 1973) has
reported that fixation of elementary objects like
stripes is confined to the lower halves (below the
equators) of the compound eyes. Therefore we have to
assume that the parameter a in Eq. (20r is different

(19)
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Fig. 10.Theoretically derived probability distributions representing
the stationary phase of fixation of a black vertical stripe. plotted by
the computer according to Eq. (21). The parameters A and yare
derived from Fig.4a and 4b in which VA~ 0.3 [dyne. em].

y ~ 1.9 [sec- I]. The value of a = ~ .determined by the slope of
the linear D(tp) region. is given by Fig. 9. where a ~ 1300[sec- 2].
The parameter r, which has not been measured experimentally. is
given a value which produces histograms typical of those experi-
mentally obtained for low coupling. The probability distributions
compare well with the experimental ones of Fig. 3. for low coupling.

The high coupling (~ =52 . 10- 3) distribution is given here to
show the expected failure of the linearized equations in these

conditions (associated with high values ofi? and i?)

from zero in the lower regions, whereas in the upper
regions of the eyes a should be equal to zero. Concern-
ing the induced symmetric torque response which is
partly represented by the parameter b, it is about
homogeneously distributed in horizontal eye regions
above and below the equators of the compound eyes,
as has been shown by G6tz (1964) for Drosophila. In
addition it is known that induced torque responses
elicited in different parts of the eyes contribute
additively to the total response, Reichardt (1973).
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Fig. 11. Fixation of a stripe segment in the presence and absence
of contrast visual noise (average contrast 50%). The figures a-d
show in the upper part the patterns and in the lower the correspond-
ing stationary fixations. The results. from a single test ny. are
qualitatively typical. The value of the coupling parameter is

e
- = 8. 10- 3 [see]. For further explanation see the textk

Consequently, the result given in Eq. (20) should be
applicable even to those special experimental cases
where the lower parts of the eyes are confronted with a
pattern different from the upper parts.

In Fig. 11 we report the outcome of a typical
experiment. Fig. lla illustrates the case when a single
stripe segment is positioned just below the equatorial
line ofthe two compound eyes, resulting in the fixation
of the segment, shown in the lower section of Fig. lla.
In the following experiment the upper part of the
panorama contains visual noise of medium contrast
(about 50%). As can be seen in the lower portion of
Fig. 11b, the presence of the visual noise in the upper
part of the panorama clearly improves the quality
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Fig. 12. The theoretically derived probability distributions for the
experiment of Fig. 11 obtained from Eq. (21) and plotted by a com-
puter. The (exemplifying) values of the parameters are those used
in Fig. 10 (or obtained from them as explained in the text). The
nonlinear shape of D(Ip) (see Fig. 9) is taken into account in these
plots. Equation (31) is used to find the equivalent "white~ noise
spectral density which in the linear region of D(Ip)gives the same u
as that of Eq. (21); the equivalent spectral density is then used in
Eq. (31) to give an approximate probability distribution over the
whole range. The probability distributions a-d show a good

agreement with the typical behavior of the flies (see Fig. 11)

of the fixation of the stripe segment. If, however, as in
the next experiment, the visual noise covers the lower
part of the panorama, a marked decrease in the
fixation quality is observed, as can be seen in Fig. l1c.
In the following experimental case, where the contrast
noise covers the entire panorama, fixation is improved
again to about the same quality as in the first experi-
ment when only the stripe segment was presented.
This is shown in Fig. lId.

We have theoretically derived the outcome of the
experimental results shown in Fig. 11 by calculating a
sequence of histograms from Eqs. (20) and (21); the
results are presented in Fig. 12. In connection with
these calculations, we took the nonlinear shape of the
D(1p)-characteristics into account (seelegend of Fig. 12).
The quantitative details of the calculations rest on
sample numerical values of the parameters in Eq. (20)
which were derived from other experiments. For the
experiments reported in Fig, 11,the coupling amounted

e
. toT =8. 10- 3 [see]. The numerical values of the
parameters A and y were determined in open loop
experiments presented in Figs. 4a and 4b; they are
of the order, VA~ 0.3 [dyne. em] and y = 1.9[see-I].
Parameter a was derived from the 111 superimposed
D(1p)-characteristics shown in Fig.9 by taking into
consideration that the stripe segment covered only
about 25 % of the lower half of the panorama. Under
these conditions the estimate for a amounts to about
a =450 [see - 2]. The numerical value of the param-
eter b, which amounts to b=135 [see-I], is derived
from the (12::::::0.13 [rad2] value of the fixation distribu-
tion generated by the black stripe segment in Fig. I1a.'
The value given here for b is consistent with the value
assumed for r in connection with the results reported
in Fig. 10, if one takes into account the different sizes
of the stripes. According to these numerical values
of the parameters, a fixation distribution was calculated
from Eqs. (20) and (21) and is shown in Fig. 12a.-This
distribution is the theoretically derived counterpart
of the fixation distribution presented in Fig. lla. In
Fig. 11b we reported the fixation behavior of a test
fly to the stripe segment under the influence of a noise
pattern of about 50% contrast positioned in the upper
part of the panorama. Under these pattern conditions,
the number of receptors receiving contrast signals is
increased by about a factor 40 compared to the original
pattern consisting of the stripe segment only. Since at
high brightness levels, at which these experiments
have been carried out, 50% contrast is nearly as
efficient as 100% contrast, one has to expect that the
parameter r is increased roughly by the factor 40,
which in turn affects the parameter b in Eq. (20) and
reduces (12 to a value of (12::::::0.05[rad2]. The
corresponding fixation distribution is plotted in
Fig. 12b; it is in good agreement with the experimental
one presented in Fig. llb. In Fig. l1c we reported the
result of a fixation experiment when the visual noise
covered the lower part of the panorama. Under these
pattern conditions, a remarkable reduction in the
quality of the fixation was observed. Since there is
experimental evidence suggesting that the strength of

-- ------- --
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the symmetric induced torque response from the upper
parts of the compound eyes equals those from the
lower parts, we can assume that the numerical value
of the parameter r is about the same in both cases
when the contrast noise covers either the upper half
or the lower half of the panorama. Consequently it
seems logical to infer that the numerical value of the
parameter a has to be decreased in order to match the
theoretically determined histogram with the experi-
mental result which shows reduced fixation quality.
As has been stated before, there is good experimental
evidence that the contributions to the induced torque
response elicited from different regions of the eyes
summate linearly and, conversely, that each contrast
element makes its own independent contribution to
the overall potential profile, Reichardt (1973). Under
these conditions the upper level of the potential profile
is decreased compared to the level generated by the
stripe segment alone. This in turn reduces the relative
depth of the potential hole, which corresponds to
saying that the numerical value of the parameter a is
reduced. A fitting of the histogram of the measured
fixation distribution given in Fig. Hc requires a
reduction in a by about a factor of three (12~ 0.23),
which leads to the calculated distribution plotted in
Fig. 12c. In the last case, the visual noise covers the
entire panorama and leads to the experimental result
plotted in Fig. lId. The corresponding theoretically
derived histogram was calculated with the numerical
values for the parameters given before, except for r
which must take twice the value since the visual noise
covers the lower and the upper half of the panorama.
The result is presented in Fig. 12d.

In summary we can state: There is so far good
agreement between the experimental and the calculated
results, which shows that our theory does not only
apply to fixation under elementary conditions but also
to the behavior elicited by those patterns which
require an independent change of the values of the
parameters a and b.

In Section 3.3 we have pointed out that our
theoretical description of the pattern fixation' process
is mathematically similar to the quasi-brownian
motion of a particle in a potential hole. In this picture,
the application of visual noise to the upper part of the
panorama is equivalent to an increase of the particle's
friction on its path in the neighborhood of the potential
minimum. The influence of the friction results in a
narrowing of the particle's position distribution
compared to the distribution generated without
friction. If, on the other hand, in our experiments the
visual noise is positioned in the lower part of the
panorama, its influence is equivalent to a decrease in

the depth of the potential hole generated by the stripe
segment. This influence overrides the effect of the
friction. When however the visual noise covers the
entire panorama both effects about compensate each
other.

3.6. A More General Mathematical Treatment

The theory developed so far is a linear approxima-
tion of a more general case [Eq. (3)J, valid only if the
position and speed fluctuations are small, which is
experimentally realized during the fixation of a single
strip~ under low coupling conditions. In the following
we shall outline a more general approach for a solution
of the nonlinear Langevin-equation (3) which is based
on a formalism known in physics as the Fokker-
Planck method. The application of the method seems
appropriate to describe and to predict those orienta-
tion (fixation) experiments where the panorama
carries a pattern which consists of more than one
stripe.

Rewriting the expression for the generalized
Langevin equation (3)2 in the phase space (lp,w), we
arrive at

dlp-=W
dt

dw N(t) k Fl
-=---w--(lp,w).dt e e e

(22)

The procedure of solving these equations is simplified
if we assume that the stationary, gaussian noise
process N(t) is "white". This assumption enables us to
obtain approximate solutions which however contain
the main features of the given problem. One can show
(see Appendix C) that the non-"white" noise case is
well approximated by the "white" noise assumption
if the coupling is low and the strength of the induced
torque response large compared to the maximum
slope of the potential. Another possibility of ap-
proximating experimentally the "white" noise condi-
tion is to add to the fly's torque response gaussian
"white" noise from a noise generator whose power is
large compared to the fly's noise.

In the following we set up the Fokker-Planck-
equation, which in general is given by the expression

op 0 0
at = - Olp[Adlp, w). pJ - ow [A2(lp, w). pJ

I

[

D2 02 02

J+2" 2 OWOlp(B12'P)+ ow2B22P+Olp2 Bll'P ,

(23)

2 In the following we neglect again the delay time in the ny's
reaction. which is permissible in the cases of low coupling (see
Appendix A).
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where

A[ = lim <LlIp)*ilt-O LIt '

A2 = lim <Llw)
ilt-O LIt '

Bll = lim <Lllp2)ilt-O LIt '

Bl2 = lim <LlwLlIp)ilt-O LIt

B22 = lim <LlW2)
ilt-O LIt

The values of the coefficients Al through B22 are
determined from Eq. (22), which finally lead to the
following expression for the Fokker-Planck equation;

0 0

[

FI k

]

02p op
--(w.p)+- ~+-.w 'p+'-=- (24)

Olp ow e e OW2 ot

where' = ~2' SN,N(-r)= 2c<5(-r)and p = p(lp,wllpo,wo;t).

As has been pointed .out before, we assume here
that the torque fluctuation is stationary and F[ is not
dependent on t. Equation (24) is a general expression
which holds for different forms of Fl. For low coupling
conditions (smallJiJ2)we may approximate F[(Ip,JiJ)by

F[ (Ip, JiJ)~ rJiJ+ 0: U(Ip),

where U(Ip) designates a Ip-dependent cyclic potential
associated with the asymmetric part of the induced
torque response. The potential for a single stripe is
presented in Fig. 9b. If a pattern consists of an ensemble
of vertical stripes, one can apply the "superposition
rule" (see Reichardt, 1973) in order to derive the
associated potential, which is established by the
superposition of the individual potentials generated
by individual stripes.

Taking into account these properties of U(Ip)and
inserting Eq. (25) into Eq. (24) we arrive at

0 0

{[

1 0

l }

02P ap
--(wp)+- b.w+--

.

U(Ip)p +'-=-.
alp ow e Olp OW2 dt

(26)

A solution of Eq. (26) is simplified if one confines the
problem to a calculation of the stationary position
probability p(lp) which is theoretically approximated
by experiments of infinite time duration. Due to the
fact that the Ip-coordinate is a cyclic one, stationarity
is in our case ensured. The stationary condition

* The brackets < > designate the time averages.

requires that ~~ = O.Consequently the stable distribu-
tions

p(1p, w!lpo, wo)-+Pst.(Ip, w) (27)

which have to satisfy the conditions

Pst.(w, Ip)-+O for w-+:t if);

Pst.(w, Ip)= Pst.(w, Ip + 2nn); n = 0, 1, ..., (28)

Pst.(w, Ip)> 0;

+1t + 00

S S Pst.(Ip,w)dwd1jJ=I,
-1t - 00

are the solutions of equation

0 a
{[

1 a
] }

a2p
--(w.p)+- b.w---U(Ip)'p +'-=0.

alp aw e alp ow2
(29)

The solution for P is given by the expression

(W2 V(IJI»)
b

p(w, Ip)= Ce- T+-e ~, (30)

(25)

where C is a normalization constant. Integrating w
from - 00 to + 00, we get

1rr::Ji - V(IJI) .~

p(lp) = V l).C.e 8 ~. (31)

Equation (31) relates an arbitrary cyclic potential pro-
file U(Ip),generated by one or many individual stripes,
to the stationary position probability p(1jJ) of the fly.
Due to the fact that an e-function is a monotonic
function, a one-to-one nonlinear relation between
U(Ip)and p(lp)is expressedby Eq.(31).The parameterb
has in this connection a similar influence as in the
visual noise experiments. An increase in b is equivalent
to an enhancement whereas a decrease in b to a
reduction of the potential profile. The converse holds
for the parameter' which represents tht; power
density of the "white" noise torque fluctuation.
Further implications of Eq. (31) will be considered
in the discussion.

Our next point concerns the probability ofjumping
from a minimum in the potential profile across the
barrier of the potential wall located in the neighbour-
hood of one minimum. A typical portion of a potential
profile, illustrating a minimum, the neighbouring
slope, and a potential barrier, is given in Fig. 13.
Ipo indicates the position of the potential minimum,
Ipb the position of the barrier maximum and E = U(lpb)
- U(lpo) the potential energy difference between the
minimum and the maximum.
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following expressions

if}. ifib ifi

Fig. 13. Part of a potential profile U(lp) showing one minimum in
the position 11'= 11'0and a "barrier" in 11'= lpb' The "height" of the
barrier is [U(lpb) - U(lpo)] = E. When the potential profile is obtained
by the "superposition rule" applied to the single stripe potential of
Fig. 9, the potential U(lp) is exactly described by a harmonic potential

near 11'0and by [E - 1/20('(11'-lpb)2] near lpb

We are considering here that an escape of the
"particle" from the potential hole is a not too frequent
event, in order to guarantee quasi-stationary. This

.. .fi d b h d
. .

E ( e
assumptIon IS speclle y t e con ltIon ~ b'

Because of the shape of the D(1p) characteristics
generated by a single stripe, it is possible to describe
the potential hole and the neighbouring barrier by
two quadratic (harmonic) expressions. Even an ar-
bitrary potential profile can be approximated piece-
meal by such harmonic potentials. Consequently the
expression for the potential profile around a minimum
is given by

U(1p) = ~ a(1p_1pO)2 ,-g 2

and near a maximum by

U(1p) - ~ - ~ a'(1p-1pb)2.-g- e 2

Inserting these expressions for U(1p) into Eq. (26),
we arrive at

op op 0 02P
0= +a1p--w-+b-.w.p+(-near1po, (34)

ow 01p ow OW2
and

0 " op op b 0 r 02p (35)=-a1p--w-+ -w'p+,,-near1pb'
ow o1p' ow OW2

where 1p'= (1p-1pb)' 1po= O.
The solutions of the Eqs. (34), (35), which are

derived in detail in Appendix D, are given by the
16 Kybernctik. Bd. IZ

-(w2+atp2) .~
Pneartpo(1p, w) = C.e 2<

(Ji b)

1/2 E.b b
, - -- -(w2-a'tp'2).-

Pneartpb(1p,w)=C. 2n( .e 9~'e 2< (37)

(36)

Q -(Jl-b)~

. S e 2<d(!
-00

h ' d
b ~ '

were (!= W- Ji1pan J1= - + - + a .2 4

The probability flow of a "particle" (stripe) across
the barrier is

+00

j~= S Pb(1p'=O,w)wdw,
-00

(38)

from which, integrating by parts, we obtain (see
Appendix D) the expression

j~=C
(

J1-b

)

1/2 ( -~.!

Ji
-e 9 <
b .

(39)

A normalization procedure for one particle (stripe),
carried out through Eq. (36),leads to a determination of

C = Va}. In connection with Eq. (39)we finally get2n"
for the probability per unit time that a stripe escapes
the potential hole across 1pb

v; l~ -~;
Pbesespe= 2n V -;;- e

(32)
= V; (Vb2 +a'-~ )

.e-:.b<. (40)
2nVd 4 2

, 2

Experimentally we usually have b4 ~ a', which sim-

plifies Eq. (40) and leads to the approximation
(33)

1 - (k+r)E
P ~ l~e c

be,eape ~ 2n(k + r) V().. <J. ,

where IX= ae and IX'= a'e.

(41)

It should be pointed out again that Eq. (41) was derived under
the assumption that the torque fluctuation can be approximated by
gaussian "white" noise. In the actual experiment this however is
not the case. Therefore the problem has been taken up again in
Appendix C and solved for a non-"white" noise spectrum. Instead
of Eq. (41) we arrived at the following expression for Pb under the
assumption of gaussian low-pass filtered torque noise

1

V ,(H,}E

0( --
=- 1 --- 0(.0(' A

Pb..u.. 2n + (k+/')y ~e .
(42)
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It can be easily seen that Eq. (42) reduces to the expression given in
Eq. (41) when the low-passnoise approximates"white" noise (see
Appendix C). For the experimentally given one-stripe case, the
following numerical values are typical: 1'=1.9 [see-I], VA=0.3
[dyne. em], (X= 2.86 [dyne. em], (x' = 0.35 [dyne. em],
e r

k = 8. 10-3 [see], e = 60 [see-I], E = 1.6 [erg]. These values,

inserted into Eq. (42), lead to Pb of 1.666. 10- 4 [see - I], which
amounts to an average fixation life time of 50 min. Bearing in mind
that the calculated value, in this numerical example, is an under-
estimate because of the approximations applied in Eq. (42), it is
qualitatively in good agreement with all experimental evidence.

4.0. Discussion

The mathematical analysis presented here so far is
a first order approximation of the mechanisms
responsible for pattern fixation and discrimination by
the visual system of the fly. Refinements are possible
and will be made as soon as more experimental data
are available. On the other hand, even at this stage it
seems important to have a general understanding of
the basic organization of the system and its essential
features. As we have already stated in the introduction,
our present theory is of a phenomenological nature,
in some ways equivalent to a "thermodynamic"
description of the behavior of the fly during visual
orientation tasks. Indeed, precise information about
the underlying neural mechanisms cannot be obtained
from these behavioral experiments only. Concerning
a deeper level, which would in principle be comparable
with a "statistical-mechanical" approach, one of the
future steps in our investigation will be to clarify how
the theory describing the quantitative details of the
optomotor response, Reichardt (1969b), has to be
modified in order to meet the observations at the
"thermodynamic" level.

Experimentally, we have shown that a stationary
retinal image of an object, either illuminated with
constant or with flickering light, has no significant
effect on the induced torque signal of the fly. The noise
torque production by the fly, therefore, seems to
constitute the necessary requirement for pattern
fixation since it generates relative motion between the
pattern and the fly's retinae. It should be recalled here
that the torque response, induced by the fly's own
torque noise, is an asymmetric one with tp-position
dependence. Other investigators, as for instance
Oyster (1968), have stated that movement-direction
sensitive cells cannot provide position information.
This argument cannot be accepted since it is obvious
that asymmetrically responding motion detectors may
provide the necessary requirements for position infor-
mation. .

~- -

In our analysis we have treated the torque noise
process of the fly as a coloured gaussian process. It
cannot be excluded that under other conditions this
description may require some modifications. For
example, in an experimental situation in which the
head of the fly is free to move relative to the thorax, it
may be necessary to take possible saccadic head
movements into account. They could be represented
in the description as arising from a stochastic point
process. The corresponding mathematical approach,
necessary in the case of the human eye, has already
been outlined, Poggio (1973). From this it is clear
that a different stochastic characterisation of the
underlying random process does not qualitatively
change our mathematical formulation.

Interestingly, there are a few analogies between the
fly's fixation and the human eye's fixation of stationary
targets. It seems that in both cases stationary retinal
images are not "perceived"; in both cases we observe a
continuous "noise" production (tremor and saccades
in the human eye). Vasudevan et al. (1972)have devel-
oped a linear mathematical model, which has formal
similarities with ours, in order to account for the
statistical properties of small human eye movements
during steady fixation of a stationary target. Other
suggestive analogies can be found; for example, in the
observations reported by Richards and Kaufman
(1969) about tendencies for fixation of patterns by
human observers. The observer's eyes point towards a
position within the pattern, near the boundaries. If,
however, the outlines do not exceed about 5 degrees,
the spontaneous fixation point is located near the
center of gravity of the pattern. Quite similarly, the
average fixation position of a fly confronted with a
two-stripe pattern is towards the center of gravity
of the pattern if the angular separation of the stripes
amounts to less than about 40 degrees, whereas the
fixation is found near the boundaries (insidethe pattern)
for larger separation angles. Richards and Kaufman
also report that the fixation points of human observers
approximate the foci observed in the same patterns
when these are seen in front of a background consisting
of visual noise. They speculate, that the radial flow
observed in the presence of visual noise might ,be due
to biased motion detectors of the orientation system;
objects not perfectly centered on the fovea .would
create asymmetric velocity components. The analogy
to our observations, Reichardt (1973),concerning the
fly's asymmetry in the detection of motion might be of
interest in this context.

Besides the possibilities of applying our results
and considerations concerning pattern fixation to
biological systems other than flies, we would like to

----
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mention here some obvious extensions of the present
theory. The first one concerns the description of the
fly's behavior under visual tracking tasks. Preliminary
results, Virsik (1973), indicate that the theory predicts
quantitatively the average tracking characteristics for
a number of different experimental conditions. For
example, if an object moves with constant speed in
front of a contrasted background, the fly may follow
the object with an average phase lag (shift) which
depends upon the induced torque response generated
by the background. The quantitative details of these
observations can be derived from the theory by a
modification of Eq. (15). A second extension involves
fixation of a vertically moving horizontal stripe, which
is controlled by the fly's induced flight lift response,
Wehrhahn (1973). The general properties of the
control mechanisms involved here seem to allow a
similar formal treatment to the one given in this paper.

The next logical step, both experimentally and
theoretically, in the analysis of pattern fixation and
discrimination will be to take into consideration from
the dynamical point of view the other degrees of
freedom. This extension of the present treatment of the
problem is likely to be non-trivial if the reaction of the
fly reveals couplings between the independent direc-
tions of movement.

It is obvious that the basic problem is to charac-
terize the induced reaction Ft for arbitrary patterns.
For given low coupling parameters and noise process,
it seems possible to split the induced reaction term into
a symmetric optomotor response and a "potential"
profile - both pattern dependent. When the pattern
can be approximated by vertically oriented black
stripes or stripe segments - in the presence or absence
of contrast noise - these two terms are readily obtained.
The additivity of the induced partial responses from
the various stimulated eye regions leads to an ap-
proximate estimate for the first term, which can be
further linearized for low couplings. The potential
profile U(Ip) associated with the pattern is obtained
by the superposition of individual potential distribu-
tions, each of which is generated by an individual stripe
or stripe segment, Reichardt (1973).Once Ft is known,
the associated Fokker-Planck equation gives the
probability distribution which completely charac-
terizes the spontaneous pattern discrimination beha-
vior of the fly. In the simplified case treated in Sec-
tion 3.6, the transformation pattern/orientation (fixa-
tion) has been obtained from Eq. (31)under stationary
conditions. The probability distribution p(lp) charac-
terizes the process Ip(t), which is a projection of the
Markov process (Ip,w)which contains the full informa-
tion present at the fly's torque output.
16'

---

The mapping of the pattern into the orientation
(fixation) behavior obeys formally the rules of a one-to-
one correspondence if one takes into account the
superposition principle for the pattern-potential rela-
tion, and Eqs. (30), (31), for the potential-orientation
transformation. Indeed Eq. (31) describes a simple
non-linear filter operation upon U(Ip) which is
controlled by the parameters b and C. Large values
of the torque noise (spectral density C) determine a
quasi-linear transformation from U(Ip) into p(Ip),
mapping the complete potential profile with equal
weight. Small values of C,however, result in a mapping
of practically only the minima in U(Ip)into the prob-
ability distribution p(Ip). Since the single stripe
potential Ustripe(lp)is non-harmonic (see Fig.9), the
superposition of two or more stripe potentials can
easily lead to "symmetry breakings" with regard to the
potential minima. The number and the positions of
the minima can be considered as order parameters
distinguishing different classes of patterns. It is readily
seen that small noise powers, mapping only the minima
of the potential profile, extract pseudo-invariances
from the pattern in the sense that the stationary
orientation (fixation) histograms are practically in-
variant with respect to a class of patterns with the same
order parameters.

The formal structure of the theory, as developed
so far, suggests the possibility of applying concepts
like phase transitions to the fly's pattern discrimination
behavior. In the two-stripe case, Reichardt (1973), a
typical phase transition occurs in the stationary
fixation distribution for a value of the parameter .dip
(angular separation of the two stripes) of about 40
degrees. For .dip values greater than -40 degrees, the
previous stable fixation position 1j5=0 becomesun-
stable and two new stable positions appear, determined
by the corresponding minima of the potential.

Clearly the extension of the experiments and the
theory to more dynamical dimensions and pattern
parameters than one, may well reveal an even more
complex behavior. It is still an open question how
one can in this case characterize the induced reaction.
Especially, it would be conceivable that the potential
description may no longer be valid, because of the
non-trivial integrability conditions which, e.g., a two-
dimensional field should satisfy.

The orientation theory described so far seems at
least to reveal rich classification mechlJnisms, perform-
ing a non-trivial preprocessing of sensory information.
The idea that the pattern fixation and discrimination
process can be described by a statistical approach and
with concepts like phase transition, is appealing, and
might potentially lead to interesting developments.

--
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Appendix A

Electrophysiological findings, MC("lDn (1972), suggest a lower
limit for the delay/; in the induced optomotor response of about
70 msec. Taking values of e of around 0.1-0.2 [sec] and typical
values for the other parameters, the power spectra described by
Eq. (16A) were plotted by computer.

Such theoretically derived power spectra agree closely with
those obtained experimentally under the conditions of low coupling,
8

- =4.10-3 and 8.10-3 [sec]. These values were more frequently
k

used and are probably the most physiological ones. Both power
spectra have a typical, low-pass shape, and both show only small
contributions above 2 Hz. Nevertheless, while this agreement may
be made exact, the assumption of zero-delay seems a sufficiently
good approximation at low coupling.

As expected, Eq. (16a) does not hold for high couplings since
the basic conditions for a linearization fail. The speed fluctuations
(tjJ2) and the position fluctuations (1P2)are not small and the delay
is probably no longer negligible. Not only is the stochastic lineariza-
tion in Eq. (16a) valid for only one coupling (r, a are, of course,
coupling dependent since they depend upon the distributions of tp
and tjJ) but the non-linear dynamics of D(tp, tjJ) is likely also to play
a more direct role. Thus the problem of obtaining the spectrum of
tp(t) for every coupling is an non-linear one, for which the lineariza-
tion used so far is completely insufficient.

Other approximations may also require reconsideration. It was
assumed, for example, that the open loop torque fluctuation re-
presents the noise in the closed loop condition. This may not be so

if the stochastic properties (e.g. spectrum, gaussianity) of N(t) depend
to some extent upon average receptor stimulation or optomotor
activity.. This problem is strictly related to the question how the
process N(t) is generated. In order to incorporate these additional
features, sophistications of our experimental and theoretical work
are presently planned.

Appendix B

The autocorrelation function S",..,(-r) is obtained by performing
the convolution indicated in Eq. (17a) between ST.T and SN.N; see
Eqs. (17b) and (19). That is

1

S",..,(r)= 82 SN.N*ST.T

1 +'" A -~ II'

{

b

}
=- J e 2 cos2nf*r+-.sin2nf*lrl.e-YI'-I'dt.

82 - '" 2a.b 4nf*

-- - --

After integration we obtain

S",.", (-r)

= ~

r

e-,y,{(1' -%)cos2nf*r+ 2nf*sin2nfr} - e-"(1'-%)
2b.a.82

(
b

)
2 2

f
'

- -1' + 4n *2

_.!c,

{(

b

) }b e 2 1'-1 sin2nf*r-2nf*cos2nf*r +e-Y'.2nf*
+ 4n f * .

(
b

)
2

1-1' +4n2f*'

e-,y,{(% + 1')cos2nf*r - 2nf*sin2nf*r} + e-Y'(1'+ %)
+

(
b

)
2

1+1' +4n2f*'

(B.2)

b e-,y' {(%+ I')sin2nf*r + 2nf*cos2nf*r} + e-Y'. 2nf*

]+ 4nf* (%+I'f +4n2f*'

valid for r > O. The expression for r < 0 is readily obtained since
the autocorrelation is an even function.

Equation (8.2) gives for r = 0 the much simpler Eq. (20); in fact,
it is possible to derive directly the value for q2 by integrating Eq. (16b)
over the frequency spectrum (and using for example one of the noise
response integrals of MacLane, 1947). On the other hand the
knowledge of S",.",(r) in principle allows us to characterize com-
pletely the statistics of the random process tp(t). For example the
conditional density P",(I)(tp/tpO)is a gaussian distribution whose
mean is

S (t)
--~tpo
{tp(t)/tpo}- S (0)...'"

(B.3)

and whose variance is

2 S2
iT",(,)"".= S",.",(O)- ~

S",...(O) .
(B.4)

All other conditional probability distributions of the tp(t) process
and its derivatives can be obtained from S",.",(t)and its derivatives.

Appendix C

It is clear that the main value of the "white" noise assumption
is that it enables one to obtain simple analytical solutions, which are
at least illustrative of the gross qualitative features of the problem.
In fact, while it is easy to write the Fokker-Planck equation when
the gaussian random input process is not of the "white" noise type,
its exact solution in the presence of some nonlinearity is complicated.
In the following we will outline the same problem considered in
Section 3.6, but dropping the "white" noise assumption. Complete
approximate solutions will be given elsewhere.

We begin with the generalized Langevin equation (3)

(B.1)
81ji + ktjJ + FI (tp, tjJ)= N(t)

which by Eq. (25) is rewritten as

(C.!)

iJ
81ji+(k + r)tjJ+ - U(tp)=N(t)

iJlp
(C.2)

-- -
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where N(t) is a "non white" random process. Since the value 8 is very
small, we can approximate Eq. (C.2) as

0
(k+ r)tjJ+ - U(lp)=N(t).

Olp

We assume the random process N(t) to be gaussian and ap-
proximable by the one measured under open loop conditions;
therefore, its autocorrelation function can be taken to be SN.N(T)
=Ae-,"I, implying the following power spectrum

~ 2Ay
N(oo)= -z-T' with oo=2nf.

l' +00

In Eq. (C.3) the process lp(t) is non-Markovian, because N(t) is of the
"non-white" noise type. Moreover, since U(lp) is not, in general,
a harmonic potential, lp(t) is not even gaussian.

In order to write the Fokker-Planck equation associated with
Eqs. (C.3) and (C.4), we may suppose that the process N(t) is obtained
by passing "white" noise through a low pass filter. This is equivalent
to writing Eqs. (C.3) and (C.4) as

. 1 oU N(t)
lp+--=-

(r+k) Olp k+r

IiI+ yN = W(t); Sw.w(T)= 2Ayo(T).

The two differential equations describe the "motion" of our dynamic
system in the phase space [lp, N]. W(t) being a stationary gaussian
"white" noise process, the trajectory [lp(t), N(t)] is a two-dimensional

Markov process of whi:;h lp(t) is a projection. Equation (C.5) can be
rewritten as

au ~=x(t)
tjJ+ a;-' (k+r)

I
x+yx= W(t); Sw'w.(T)=2AY- k )2

O(T).
. ( +r

The average values occuring in the associated Fokker-Planck
equation are easily calculated from Eq. (C.6) as

. <Alp) oU 1
A.= Ilm-=x---

~r-O .At alp (k + r)

. <Ax)
A2= hm -= -y'X~r-O At

. <Lllp2)
B11= hm-=O~t-O LIt

. <LlxLllp)
B12= hm =0

~r-O At

. <Ax2) I
B22= Ilm-=2AY- k 2'

~r-O At ( + r)

The Fokker-Planck equation corresponding to Eq. (C.6) is readily
obtained as

a 0
(

oU(lp) I
) 0 Ay 02

-p=- x .p+-(y.x.p)+--p. (C.8)
ot . alp Olp (k + r) ax (k + 1')2ax2

Since - ~~ is a piecewise linear function, U(lp) can be well ap-
proximated around every stable equilibrium point (like lpo in
Fig. 13) by

I 2
U(lp).m... = TIXlp

(C.9)

(C.3)

and, around the unstable equilibrium points (like lpb)'by

U(lp).e""'b = E - + (lp -lpb)2 IX' .

. IX IX', Ay .
Therefore,defimng-=/;-=/;~=d we obtaIn

k+r k+r (k+r)

(C.lO)

from Eq. (C.8)

op a a ~p
- = - -(X-/lp)p+ -(yxp)+d-
at Olp ax OX2

(C.II)

(C.4)
around lpo = 0, and

op a ,0 ~p
- = - ---;-(x+/'lp)p+ -(yxp)+d-at alp ax ax2

around lpb(lp' = lp -lpb)'
To solve these equations we diagonalize them with the

transformation

(C.12)

z. =x
(C.13)

Z2 = x + (y-I) 1p or zi = x + (y + I') 1p' .

Substituting in the previous equations we get

(C.5) ap 0 0
[

a a
]

2_
a = -;-(yz,p)+ --;--(lz2P)+d_a . +-a 'p (C.\4)

t uZ. uZ2 Z, Z2

near lpo and

ap'a a "

[

0 0

]

2

- = -(yz,p) ;-(l z2P)+d - + -;- 'p
at az, OZ2 oz, aZ2

(C.15)

(C.6)

near lpb'
We treat the problem as a stationary one. Taking the limit for

t-+ 00 of the solutions of Eqs. (C.14) and (C.\3) we get the stable
distributions

_~ [ '('+') , I
p(lp,x)=Ce d ~'" +2"""'-""'] (C.l6)

near lpo = 0 and

, _:!~ [
-"(,-n I

p(lp.x)=C'e d ~""'+2"+l"""""] (C.I?)

near lpb' Around lpo we find

~nd -(1+,),."",
p(lp)=C -e 2d

/+1'
(C.18)

(C.?) which is a gaussian distribution with

2 Aa = u._-.

[(k + r) l' + IX] IX
(C.l9)

It should be mentioned that Eq. (20) reduces, in the limit of 8-+0,

to Eq. (C.19). Around lpb we find

Ifhd +~ .,

p(lp')=C'V Je 2d '"
(C.20)

IX'
where LI= y- /' = Y - - .

k+r
It is, of course, required that LI> O.
It is also possible to find the probability distribution around 1pb

under quasi stationary assumptions, such as
~

p(lp'. x) = C" e-Ti [-~"","+X'+2"","J

~ ' +( ,.
. - J dr -Ti ('

2nd - '" ,e .
(C.21)
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where ( = x - m 1p' and m is chosen as m = y - /' under the condition
m>O.

A tentative solution for the probability of barrier crossing at 1pb,
can be outlined as follows: We rewrite Eq. (C.8)

~=
[

~-~~
][

YXP+d~P+ ~~p
]ot ox Y 01p ox Y 01p

0

[

oU 1 d oP
]- a; - av; (k + r) -7 a; ,

(C.22)

We integrate first along 1p+ ~ = 1po;then assume the approximation
Y

p(1p,x, t) ~ 0'(1p,t) e-x" con" and finally that in the domain where
the main contribution to the integral arises, the variation of 1p is
small. Then it fpllows

00'(1p,t) 0

[

IoU d 00'

]
-=-- ---0'(1po) (C.23)

ot 01po k + r 01p y2 01po

A stationary dilTusion current j is defined by

[

V,,
]
"'°

O'e+(i+;:)'d d, ",b

J = 'l'fe +:tilk~" d1p . 7'
'1'0

(C.24)

Quasistationary conditions imply that

d I

j=20'(1pO) 'I' y'

Y f / d(H'1 V('I'Id1p

(C.25)

'1'0
where

~nd _1/+"IY'l"

1

Y'

O'(1po)=C - e 2d . d(H,) V('I'o)
l+}' 'I'~'I'o~o' e .

From Eq. (C.18) we obtain the normalization factor C

y + I,},::
C= - V ly2nd (C.26)

and, therefore, the probability per unit time for the stripe to escape

across 1pbis

I 1 V ex _,(k+')EPb= 2; (k+r) 1+ (k+r)y 0e A .

One can easily prove that Eq. (C.27), in the limit of "white noise"
(Y"" co, Aexy) approaches the form of Eq. (41). In this connection we
recall that the limit at which the low pass noise spectrum changes
into "white noise" is given by

(C.27)

(
2Ay

)y2 + 4n2 f2 . 2c [spectral density] .hmy-"'.A~'y
(C.28)

Then Eq. (C.27) under the same limiting conditions [using (C.28)],
becomes

IH'

(Pb)hm,-o.A~'y= 2 (k 0e---;-En +r)
(C.27)

which is equal to Eq. (41).
A numerical evaluation of Eq. (C.27) in the case of the potential

profile generated by the single stripe (see Fig. 9) is given in the text.
In conclusion, the usefulness of this approach to the non-white

noise case is mainly in giving the conditions under which it is
approximated by the white noise one. From Eqs, (C.18), (C.20), (C.27),

it turns out that the white noise stationary solutions of Section 3.6

are a good approximation (with c = A/y) if the condition y(k + r)~ ex
holds, where exhere represents the maximum slope of the potential
profile.

Appendix 0

Following Kramers' (1940) approach to the dilTusion model
of chemical reactions, we seek a solution of Eq. (34) in the form

-~ -(w'-a' ',) b
p(1p', w) = C e 8( R(1p', w) e '1" ~ (D.I)

which, substituted in Eq. (35), gives

oR oR oR 02R
0= -a'1p'--p--bp-+(-.

ow 01p' ow OW2
(D.2)

Of course, R = const is equivalent to thermal equilibrium, i.e. there
is then no net probability flow from 1poto 1pb'It is required however,
that the probability distribution (D.1) will approach the equilibrium
around 1p= 1po,falling 01Tto zero far to the right of 1pbwhere, because
of the quasi-stationary conditions, the probability of the stripe
positioning must be negligible. These conditions are expn:ssed
formally by

R(1p', w) 1 for 1p'~ -1pb

R(1p', w) O for 1p'~0.
(D.3)

Assuming

R=R(e) e=w-J.l1p' (D.4)

and substituting in Eq. (D.2), we get

dR d2R

0= [(J1-b) w- a'1p']dQ H de2
(D.5)

which, with the condition

1I=~+Vb2 +a'r 2 4 '
(D.6)

has the solution

~-b . -(n-bl'£:
R(1p',w)= - J e 2( de.

2n( -'"
(D.7)

Clearly R satisfies the boundary conditions (D.3), since

R I for e->co
(D.8)

R O for e""-co.

Equations (D.1) and (0.7) finally lead to Eq. (37).
The probability flow across the barrier is given by Eq. (38)

which is
+'"

jb == J Pb(1p'= 0, w) wdw.

Equation (38) can be rewritten as

V(J1-b) -~ +'" -w,-"-. w _In-bl.,
jb=C--e (I' J dw.w.e 2( J e 2( de

2n( -'" -'"
(D.9)
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which, integrated by parts, gives

~/l-b) -~

{[

-w'~ ( w _(a-b).,

]

+00

jb = C -e (9 -e 2( - S e 2( de2n( b -00 -00

+00 ( -w'~ _(a-b)w'

}
+ S - e 2( e 2( dw

~oo b

~/l-b) -~ ( +00 _Lw'
= C -- e (9. - S e 2( dw

2n( b -00

=CV(/l-b) .l.-.e-*./l b

The constant C is then normalized using Eq. (36) through

h +00 -(w'+a",')~

1 = S S C e 2( dwd1p ; (D.ll)

bva
we get C=-.

2(n

Equation (40) becomes in the limiting case of ~ ~ a'4

va
[

l~
]

b -E>-

Pb= 2;TidV 1+ b2 - 1 .2" e 9.(

va b -~
[

2a'

]
~ . 1r; . -. e 9( 1 + -- - 1

2nVa' 2 b2

1 -E>-

= 017 2nb .e 9'(.
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