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Abstract. The study of the orientation behavior of flies
requires the consideration of a few simple control
systems for fixation and tracking. In this paper two
such control systems are analyzed, in terms of the
corresponding difference and differential -equations.
The first control system corrects with a delay & the
angular trajectory proportionally to the error angle y;
the second control system also corrects proportionally
to the error angle 1 but only when the absolute value
of 1 is increasing. The differential equations are

P(r)=—ap(t—e)+ A’ ©)
and
() = —olplt— ) - uly(t— Pt —e)] + 4’ (*)

u[ ] being the step function (u[x] =1 if x>0, other-
wise u[x]=0). Under suitable restrictions on the pa-
rameters it is proved (a) that the difference equations

Xppq=X,—0x,+A4 09
and
xn+.2=xn+1~—axn+1'u[xn+1'(xn+1_xn)]+A ) ("

which can be associated to Egs. (0) and (#), are “asym-
ptotically equivalent” (for large n) if the time scale is
“smoothed” over two time units and (b) that the
second equation, with 0 <o <2, always converge to a
set of oscillating solutions of period 2 for arbitrary
initial conditions. Numerical simulations show that the
delay-differential equations behave in a similar way.
We have also demonstrated with computer simu-
lations that both control systems can satisfactorily
predict the 3-D trajectory of a fly chasing another fly.
The main biological implications of the analysis are:
(1) The two control systems are practically equivalent
descriptions of the fly’s control of flight on a “coarse”
time scale (2 times the fly’s delay), consistently with an
earlier more general derivation of Eq. (0) (Poggio and

Reichardt, 1973). (2) On a fine time scale the second
control system is characterized by an asymptotic oscil-
lation with period twice the fly’s delay. It is conjectured
that a wide range of control systems of the same
general type must have a similar oscillatory behavior.
Finally, we predict the existence of asymptotic oscil-
lations in the angular trajectory and the torque of
tracking flies (if a control system of the second type is
involved to a significant extent). Such- oscillations
should have a basic period of twice the effective
reaction delay, and should be best detectable out-
side the binocular region. Closed loop experiments and
the analysis of free flight trajectories may provide
critical tests of this prediction.

1. Introduction

1.1. Biological Background

1.1.1. The Fixation Control System: An Approximate
Description. Houseflies visually control their flight
course during fixation, landing and tracking of moving
objects. A theory proposed by Reichardt (1973) a few
years ago led to a phenomenological model of a
control system used by the fly which can describe
quantitatively a variety of fixation and tracking in-
stances. According to the theory (for a review see
Reichardt and Poggio, 1976) the fly controls its
angular velocity &, through its torque T, according to a
simple approximation of the flight dynamics

O (1) + ka1 (t) =T(t), 1)

where ©® and k are the moment of inertia and an
aerodynamic constant (of the fly), respectively. The
situation in which the fly fixates or (tracks) a stationary
(moving) target is described, in its simplest one dimen-
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sional form, if ©&,=0 and translation effects are
neglected, by

kp(r) = — [R, {w(s)} + N(©)]+50), 2)

where S(t) reflects the angular motion of the target [if
the target moves at constant angular speed
S(t)=const.]. The fly’s torque, in square brackets, is
approximated by the sum of two terms: R, {y(s)}, the
visually induced response is a functional of the error
angle history y(t); N(t), about which ignorance is
professed, is characterized stochastically as a gaussian
process. Reichardt and Poggio (1976); see also Poggio
and Reichardt (1973) have shown that if a) the fly’s
response depends in a smooth way on the error angle
history and b) y(¢) is not changing too fast [if S(t)=0
this is automatically satisfied] then R,{w(s)} can be
approximated in terms of two functions of  and

R{w(s)} =D[y(t—e)]+rlw(t—e)]-plt—e), ©)

where ¢ is the delay in the response of the fly.
Thus the overall equation describing the “trajec-
tory” of a fly is

kip(t) = — D [y(t —e)]—r[y(t—e)]- Pt —e)+ N(1) + () -

4)
The various terms in the approximate Eq. (4) can be
measured quantitatively by appropriate experiments.
Notice that Eq.(4) is, up to this point, only an
approximate description, valid only on a “slow” time
scale (slower than the fly’s reaction time scale). As a
matter of fact, Eq. (4) has been mainly used with e=0
to describe situations in which the delay ¢ is negligible.
It is important to stress that its derivation and its
validity are independent of the specific form of the fly’s
visual response R{w(s)} and thus of the underlying
neural mechanisms.

1.1.2. What is the Exact Form of the Fly's Visual
Response? Since the formulation of the theory, the
question of the precise form of the visual response of
the fly R,{w(s)} and correspondingly about the nature
of the underlying mechanism has been often addressed.
Two main hypotheses have been considered :

a) The flicker detector hypothesis: position infor-
mation is measured independently of movement.
Equation (3) is not only just an approximate but also a
faithful description, at the level of the mechanisms, if
the reaction is nonzero at zero flicker frequency. This
hypothesis stresses the importance of the position term
relative to the velocity term. In its extreme form, it leads
to

R {y(s)} = D[w(t—¢)] (5)
and thus to the equation
kip(t)= — D [w(t—&)]+ N(1)+5() . (6)

For ¢=0 and r=const. the form of Eq. (6) coincides
with Eq. (4): remember that Eq. (4) is valid on a time
scale over which the delay ¢ is usually negligible.

If flicker detectors are assumed to be active only
when [ip| %0, the control system is essentially of the
type of hypothesis b).

b) The progressive-regressive hypothesis: reaction
to progressive motion (front to back) is larger than to
regressive motion. The reaction is parametrized by .
Perhaps the simplest formulation of this idea is

R {w(s)} =D [w(t—e)]-ulp(t—epplt—¢)] (5)

with u[x]=1 if x>0 and 0 otherwise, leading to

kp(t)= — D [w(t—e)] -ulw(t—e) -t — &)1+ N0 +50) .
(6)

Thus position information is mediated by move-
ment computation’. Equation (3) is no longer a faithful
description of the reaction of the fly. As a consequence,
the decomposition of Eq. (3) into 2 terms, depending
respectively mainly on position and velocity does not
reflect separate mechanisms.

Although Reichardt (1973 ; Poggio and Reichardt,
1973: see also Geiger, 1974) originally proposed
hypothesis b), which is also supported for Drosophila
by many data (Gotz and Wenking, 1972; Gotz, 1975;
Gbtz et al,, 1979), later experiments by Pick (1974)
suggested that a) was a better description of at least a
part of the fly’s reaction (Pick, 1976; Poggio and
Reichardt, 1976). Very recently Wehrhahn and Hausen
(1980) have convincingly argued on the basis of careful
experiments with transient stimuli that hypothesis b) is
fully adequate to describe several instances of fixation
and tracking behaviour in female houseflies (but see
Geiger, 1980).

As a consequence, it is again interesting to analyze
and compare the properties of Eq.(6) and (¢'). It is
important to stress that these 2 equations describe
extreme versions of hypothesis a) and b), respectively.
In particular, Eq.(6) is different from the original
Reichardt-Poggio Eq. (4). For r=const. the form of
Egs. (4) and (6) coincide if the delay is zero (¢=0),
which is roughly equivalent to the conditions under
which Eq. (4) was derived and mainly used. Even for
delays different from zero (but small), Eq.(4) (with
r=const.) behaves essentially as Eq. (6), as an exam-
ination of the associated characteristic equation imme-
diately reveals (compare an der Heiden, 1979; Hale,
1977). If the delay is small, solutions of Egs. (4) and (6)
can be considered practically equivalent. For these
reasons, we will be concerned in this paper with Eq. (6)

1 Notice that a decomposition of the fly’s response into a
direction sensitive (y,,) and a direction insensitive component (y,;) is
always formally possible, as long as the fly’s response is an (arbitrary)
function of object position and velocity (Geiger and Poggio, 1975)



(the “normal” equation) and Eq. (6') (the “progressive-
regressive” equation), representing extreme forms of
the two control systems a) and b).

Various mathematical aspects of Eq. (4) (for ¢=0)
and its extensions have been already characterized
(Poggio and Reichardt, 1973; Reichardt and Poggio,
1975) with special emphasis on stochastic properties
and more recently on free flight trajectories (Hadeler
et al., 1980; Reichardt and Poggio, 1980).

To anticipate the results somewhat, the analysis in
this paper shows that although Egs. (6) and (6") have a
characteristically different fine behavior, they are
equivalent on a smoothed time scale, in accordance
with the more general derivation [of Eq.(4)] of
Reichardt and Poggio. In addition, it is proved that the
fine structure of the solutions of Eq.(6) exhibits
asymptotically a typical oscillatory behavior. Thus,
considered as two different control systems, Egs. (6)
and (6) are both similarly effective in fixation and
tracking, with a different fine dynamics but equal time
smoothed properties. The control system Eq. (6) can be
considered also as an approximation of control system
Eq. (6"), the approximation being valid on a smoothed
time scale.

Much of this paper is devoted to the analysis of the
difference equations which can be associated with the
differential equations Egs. (6) and (6') by discretizing
time. One reason is mathematical convenience. It is in
fact possible to provide a satisfactory characterization
for the difference equation, whereas an equivalent
analysis of the differential equations seems more dif-
ficult. On the other hand numerical simulations show
that the behavior of the difference equations closely
reflects in this particular case the behavior of the
corresponding differential equations. There is an ad-
ditional reason for emphasizing the difference equa-
tions. From the biological point of view, there is scant
evidence for believing that the differential equations
Egs. (6) and (6) should describe the fly’s control system
better than the corresponding difference equations.
This is because the delay involved (20-40 ms) is small
compared with the time scale over which the fly’s
response can be considered smooth and continuous

and it is comparable with the basic time constant
associated with the aerodynamics of flight % ~8 ms).
At present both types of description can be considered
legitimate first order approximations.

1.2. The Mathematical Problem

Consider stripped-down versions of Eq. (6) and (6) as

Pt)=—a'yplt—e)+ 4, (™
P(t)= —op(t—e)-ulp(t—e) - Plt—e)]+ 4", (7
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where the constant A’ represents the angular velocity
of the target. v is an angular coordinate, ie.
—n<yp<n with p+2n=1p.

Although very simple, these equations preserve the
important characteristics of Egs. (6) and (6), and again
we will refer to them as the normal [Eq. (7)] and the
progressive-regressive equation [Eq. (7)].

We can associate a difference equation to the
differential equation Egs. (7) and (7'), respectively, by
discretizing time in the following way. We substitute

. X=X, i
P(t) with Zn_"n=1 and obtain
&

AX, =—ax,+A4

Xy =X, +AX, 4y n=0,1,2...

Axn-#—lz——-oc‘xn'u[xn.Axn]—{—14 (8/)

Xy =X, FAX, n=0,1,2...,

where a'c=0, A'e=A, a>0, ¢>0. Notice, as pointed
out by Hadeler, that this way of discretizing the
differential equation is by no means unique. Although
the first order difference Eq. (8) and the second order
difference Eq.(8) can be intepreted as defining
dynamical systems on the real line (via the map
¢:R-R and ¢ :RxR-RxR, respectively), the
biological situation requires x to be interpreted as an
angular coordinate, ie. is to be understood mod 27
with the convention —n<x<m More precisely
Eq. (8') defines a dynamical system with a periodic
coordinate in the following sense: the state space
is S xR, ie. [x,Ax,]: the first equation (in 8) is in
R; Ax, is real and x,e[—m, +7); the second equa-
tion is to be understood mod 2n(—n<x,, ;< +7).
Equation (8) may be interpreted in a similar way. In
this sense we will be able to define with Eq.(8) a
dynamical system on S (via the map @:S—S) and with
Eq. (8') a dynamical system on S xR (via the map
@':S x(R—S xR). The interpretation of Egs. (8) and
(8') as dynamical systems on the circle introduces in
general a number of complications. They are not,
however, relevant neither for the biological situations
nor for the analysis of this paper. We could in fact
restrict our mathematical analysis to the dynamical
systems defined by Eq. (8) on the real line. We chose,
however, to consider in Theorem 1 the coordinate to
be cyclical in the above sense. We avoid most of the
complications by restricting our parameter values [for
Eq.(8)] in such way that Ax, <=, from some n.
Corresponding restrictions for Eq. (8) could be 4/o<n
and a <1 (then Ax, <2m).

Whereas Eq. (7) is a well known linear retarded
functional differential equation, Eq. (7') is more pa-
thological in several respects, even when it is con-
sidered as a dynamical system on the real line. It is a
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neutral equation (with delay in the derivative), contain-
ing the non continuous function u[ J. Standard results
in the theory of functional differential equations can-
not be directly used to characterize completely the
behavior of Eq.(7) (see, for instance, Hale, 1977).
Notice that Eq.(6) (with e#0) is also a neutral
equation.

The situation is quite different for the difference
Eq.(8) and (8), which will be analyzed in the next
section. Properties of the Egs.(7') and (8') will be
compared by means of computer simulations. It turns
out that the biologically relevant properties of the
difference equation are also valid for the differential
equation.

2. Mathematical Analysis
2.1. Main Results for the Difference Equations

The dynamical system defined by Eq.(8) on the real
line (instead of the circle) is well known. For small
enough delays, the solution decays “exponentially” to
the equilibrium value %= A/o for all initial conditions.

. - A
With the restrictions |—| <m and <1 the correspond-
o

ing dynamical system on the circle behaves in basically
the same way, since, if

x| <7, [X,4=lx,—ox,+A|<m.

We start from a few instructive facts about the
function f:R—R defined by [compare Eg. (8')]

f(xn9xn+1): —xn)]+xn+1+A'

©)

Lemma. a) If A=0 every state (x,x) is a stationary
state, i.e. f(x,x)=x.

— oy g ULXy g (X g

b) If A=0 there is no stationary state, i.e. f(x,x)=*x
for every x.

¢) If A=0 there exists only 2 numbers 4, be[—m, )
with a=b such that f@, b= f(b a)=b. The two
numbers are 4=2A/u, b= 2A/oc

In a certain sense these properties suggest that
Eq.(8) with 4=0 is not “structurally stable”.
Equation (8) is immune from this singularity.

We prove now the following theorem for the
dynamical system defined by Eq. (8') on the circle (see
Sect. 1.2).

Theorem. We assume 2AJ/a<m. Then, if 1=5a<2
Eq. (8), defined on the circle, has a global stable attrac-
tor with period 2, namely (a, b). If 0<a< 1 in addition to
the attractor (d, b) some trajectories approach asym-
ptotically (only from below) the value ¢=Ala, although

¢ is not a stationary state. This artefact can be removed
by a small perturbation of the function u[ ] in Eq. (8.

Proof. We only sketch the main points of the proof
We assume A >0, since the argument for A<0 is
equivalent. Since 24/a<m and <2, it follows that
A<m. If for some n, Ax,<0 Eq.(8) implies that
Ax,, >0, where Ax, . is mterpreted as a real num-
ber (and not mod 27). Thus there always exists a n for
which Ax,>0; then Ax,, |<n In the following,
therefore, we choose n such that Ax,>0. We dis-
tinguish between o<1 and o= 1.

O<a<l

The 1-D coordinate space is divided into four regions:
o ={x:m>x>3A4/0}

B ={x:3A4/0>x>Afo}

€ ={x:A/a>x>0}

P ={x:0zx=—m}.

Observe that . may be empty if A4/a large. We

consider now the fate of the coordinate point depend-
ing on its location at time n.

Case of

If x,edx,, =x,—ox,+A4 and X,.,=X,,,—0X,
+2A. Thus x,,,e% or % (because x modulus 2n)
and Ax,,,>0.

Case &

If x,e% x,,,;=x,+A. Thus at the next time point
Ax>0 and xe % or . There is some m>n at which
x,€%, Ax,,>0.

Case €
If x,e% then

X4 =X, —0X, A, AX,,=—o0x,+A4>0.

Thus x, increases monotonically, approaching (expo-
nentially bounded) the limit £ =A/x. This value is an
attractor but only from below. It is not stable for
arbitrarly small perturbations. We can remove this
artificial singularity defining instaed of u[ ] the
function

u,[x]=1
u[x]=0

if x>e,
if x<e.
Then for ¢ arbitrarily small (¢>0), there exist n such

that x,(x,—x,_,)<¢ determining x,.,=x,+4 at
which point the barrier is crossed and x, . ;€ %.



Case %

If x, €% then writing x,=d+#n with a=24/0, <4
one obtains, since the condition 24/x <7 ensures that
X, <T,

xn+2=&+(1~0()1’], x,,.{.zEe%, Axn+2>0.

Thus the subsequence x,,=a, if in % remains in %,
approaching the limit a=24/o according to

ape=a,+2A-aa,) .

Correspondingly, the sequence b, =X,, 4 1 approaches
the limit 24/u— A=b.

Thus, once in 4%, the coordinate point remains
there, asymptotically oscillating between a and b. Once
removed the singularity in € (at x=A4/x), % is a global
attractor, in the sense that all trajectories end up in %
irrespectively of initial conditions. The following dia-
gram summarizes some of the results, illustrating the
(“asymptotic”) “transition path” for the sequence a,
O<a<1):

7
,%\
%/ o 9

1Z0<?2

The 1-dimensional coordinate space is now divided -

into 5 regions:

o ={x:x=3A/a}

B ={x:3A/0>x>2A/o}
B ={x:2A4/a=x> Ao}
€ ={x:A/u>x>0}

P ={x:0=2x=—7}.

Case &

If x,e % there is some m such that (m>n)

/
x,€B or %', Ax,>0.

Case o
If x,e then x,, ,e% or 9.

Case €
If x, €4, x,=2A4/0+n—Ajo>n= —24/
Ax,  =—o0x,+A>0
Xy =X, — X, + A= —0)x,+ A, Aju<x,, <24/a

and for 1Sa<2,x,, €#,Ax,,,>0.
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Case %'
If x,e# x,=24/a+n0>n>—Alo
Ax, , =—ox,+A=—24+aln|+A=0.

Thus x,,,=a+(1—o),x,,,€% and Ax,,,>0 and
a,=x,, approaches, if |1—o/<1, asymptotically
4=2AJo, while the sequence b,=x,,.,; approaches
b=2A/u— A.

Case %"

If x,e A, x,=2A4/0+n 0<n<Afo
Ax,,,=—ox,+A<—24+A=—-A<0.

Thus x,, ,=a+(1—o)y and A/a<x,,,<a, imply-
ing that

/
x,.,€% and Ax, ,>0.

Thus 4’ is an attractor region for the sequence a, =X,
The transition graph for the sequence a,, is (for I Sa < 2)

o
l

/ P
3 B

Remarks. (a) Theorem 1 can be extended to the case in
which x is not an angular coordinate. The correspond-
ing dynamical system is then defined by a map
¢ ' RxR->RxR [from Eq.(8)]. In this case the
upper bounds of regions & and & change to + oo and
— o0, respectively (region o/ can actually merge with
). The (asymptotic) transition &/ — < disappears. The
stability condition 0<a<2 is then the same as for
Eq. (8) (on the real line).

(b) The asymptotic behavior of Eq. (8') is the same
as of Eq. (8) under a smoothing operation over 2 time
units [the equilibrium value is, however, different,
being (24/0.— A/2) vs. Afo. for the “classical” equation].
The transient behavior, if smoothed, is mostly but not
always the same, depending on the initial conditions
(for a <1 it is the same if xe &/ U ; it is not the same if
x,€ %). The period of the asymptotic oscillation is 2.

(c) The peak-to-peak amplitude of the asymptotic
oscillations [in Eq.(8)] is 4 and is in turn pro-
portional to the average x value (24/a—A/2). The
oscillation amplitude can be made arbitrarily small
with small 4.

2.2. Numerical Results

All numerical simulations of Egs. (8) and (8') have been
performed with angular coordinates. For the parame-
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Fig. 1a—d. Comparison of the difference equations Eq. (8) - the usual
equation — and Eq. (8') - the progressive-regressive equation. The
figures with primed letters show simulations with the latter equation.
In a =02, x,=100°, A=10°; in a’ a=0.4, x,=100°. In b 2 =04,
xo=—100°, A=10; in b «=08, x,=-100. In ¢ a=202,
xo=—100°, A=10°. ' is the same as ¢’ on an extended time scale; it
is the only case shown here where the angular coordinate plays a
role. In the case of Eq. (8') the initial condition includes x, =x,. See
text

ters and initial conditions used in the examples shown
here, the cyclic coordinate does not play any role with
the exception of Fig. 1d".

Numerical simulations of the difference Egs. (8)
and (8') are shown in Fig. 1 to illustrate some of the

analytical results of the previous section. The asym-
ptotic and the transient behavior of the subsequence a,
[for Eq. (8")] is equivalent to the solution of Eq. (8),
because the initial condition does not lie in € or ¥
(Fig. 1a'). Figure 1b shows that when x, lies in &, the
transient behavior of Eq. (8'), which is determined only
by the constant A, differs from the initial transient of
Eq. (8), dominated by the value of «. The unstable
equilibrium at the ¥-2% boundary, which exists for
<1, is approached faster for larger o. The “stability”
condition « <2 is valid for both equations: Fig. 1¢ and
1d’ show a case in which the solution is unstable.

Computer simulations (with a simple Euler in-
tegration algorithm, checked by making the integra-
tion steps ten times smaller) suggest that the differen-
tial equation shows a behavior similar to the difference
equation. Figure 2 summarizes the main results. The
transient and asymptotic behavior of the differential
equations are equivalent to the difference equations
(Fig. 2a, b). The computed solution of Eq. (7) oscillates
around (24/a + Ag/2), whereas the asymptotic value for
Eq. (7') is A/e. Thus, in the differential equation case,
averaging over 2 time units the asymptotic trajectory
of Eq. (7') seems to provide the solution of the classical
Eq. (7) with «/2 [to compensate for the fact that the
“force function” o is active in Eq. (7') only half of the
time, asymptotically].

From the biological point of view it is interesting to
know how the two equations behave when the con-
stant A is substituted by a sample function of a
gaussian process N(t) (Poggio and Reichardt, 1973).
Figures 2¢ and 2¢’ compare the equation

()= —ap(t—e) - ulw(t —2)- pt—el] + N(©) (10)

with the “classical” equation

P(t) = —ap(t—e)+ NQ) , (11)

[ Fig. 2a-d. Comparison of the
differential equations Eq. (7) — the
usual equation — and Eq.(7') - the
progressive-regressive equation. The
figures with primed letters show

simulations with the latter equation.

In a o' =10, p(0)=100°, A'=500°/s,
£=0.02s. In a’ the parameters are

the same, apart o’ =20. In b o’ =20,

b’ (0)=100°, A’'=500°/s, e=0.02s. In
b’ parameters are the same apart

o' =40. In d o« =10, p(0)=0°,

A'=0°/s, e=0.02s; a low-pass noise
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pass noise term is added. In the case
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of Eq. (7') the initial condition
includes y(t)=y(0), 0=t <e. See text
for more details
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where N(t) has been generated by low-pass filtering a
gaussian “white-noise” process. As expected, the so-
lution of Eq.(11) is a smoothed version (over the
oscillation period, ie. 2¢) of the solution of Eq.(10),
with twice o. Notice that in all these simulations the
amplitude of the asymptotic oscillations increases with
increasing 1 values (see remark c) in the previous
section).

The criteria for stability of the solutions are of
course different: in the case of Eq.(7) defined as a
dynamical system on the real line, stability is ensured if
e <Z. Numerical simulations suggest that the same
condition is sufficient but not necessary to ensure
practical “stability” for the solutions of Eq. (7).

It is finally interesting to ask whether modifications
of Eq. (7 still yield the same characteristic (asymptoti-
cally oscillatory) behavior. Assume, for instance, that
the response to regressive movement is not zero,
although smaller than for progressive movement. This
hypothesis may be translated into the equation

Pt) = —op(t—e)-ufyp(t—e)-Pplr—e)}
+a*w(t—£)-u{~1p(t—8)-q°)(t—s)}+A (12)

with a>a*>0.

Observe that progressive and regressive responses
follow the motion (ie. have the same sign as ).

Figure 3a shows that Eq. (12) has, with o*=0/2
again the same qualitative behavior, with a larger
oscillation amplitude, as intuitively ~expected.
Computer simulations suggest that other more com-
plex versions of Eq. (7') still show the same asymptotic
oscillation, as long as there is an asymmetry in the
“force term” oy for progressive vs. regressive move-
ment. More accurate description of the fly’s reaction
should, for instance, take into account that the fly’s
reaction also depends on the speed % of the stimulus.
For instance, as suggested by Hausen, the fly response
may grow proportionally to ¢ up to a certain value of
. This leads to

P(t)= —op(t—e)o(p) - u{p(t—e) Dt} +4,  (13)

where o(|ip|)=tp| for [p|<|p,| and =[ip | for [p|> i .

Figure 3b shows that the behavior of Eq.(13) is
again similar, although the oscillation pattern is some-
what more complicated. Notice that asymptotic
oscillations are present also when the u function is
dropped alltogether in Eq. (13).

The “equivalence” over a coarse time scale between
Egs. (7) and (7)) seems to apply also for the case in
which a more complex function than o is used, as for
instance, the function D(y) (Reichardt, 1973; Poggio
and Reichardt, 1973) associated with the fly’s reaction
to one or more stripes.
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Fig. 3a and b. In a the equation simulated is Eq. (12) with o' =40,
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where $,=2000°/s, o' =02, A'=500°/s, e=0.02s, »(0)= —100°

2.3. Simulations of 3-D Chases and Landings

Evidence has been accumulating in recent years that
Eq. (3) represents the starting point for a successful
description not only of the closed loop fixation and
tracking experiments but also of free flight chases
between flies and landing of a fly on a target (Land and
Collett, 1974 ; Reichardt and Poggio, 1980; Biilthoff
etal, 1980 and in preparation; Wagner, 1980).
Figure 4 and 5 show 3-D simulations of the trajectory
of the chases between Musca flies shown on the top of
Figs. 4a and 5a, respectively, from the trajectory of the
leading fly. The set of equations used for the simulation
is based on

ke ((t)= — D[t — )] +r(0)

for the torque, with o, being the horizontal angle of the
fly

n3(t) = — L[t —1,)]+58(0) (14b)

for the lift, with 9 being the vertical error angle and z
the vertical coordinate;

hv,.(t) = — Tle(t —73)]

for the thrust, with o being the 3-D distance between
the chasing fly and the leading fly and v, the forward
velocity on the xy plane. Notice that the equations are
coupled [(t) for instance depends on the coordinates
of the leading fly at time ¢ and the coordinate of the
chasing fly at time ¢]. Input to the equations are the
xyz coordinates of the leading fly. With initial con-
ditions given by the first 7, seconds of the true
trajectory of the chasing fly, Eq. (14) reconstruct the
rest of the trajectory. &, z and v,, determine at each t
the “new” xyz coordinates of the chasing fly. More

(14a)

(14¢)
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Fig. 4a—c. A stereo plot of a 3-D chase between flies Musca domestica is shown in the top of a. It should be observed with standard
stereoglasses. The middle figure shows a simulation of the same chase according to an algorithm based on Egq. (14). The algorithm computes
from the xyz coordinates of the leading fly (x) and of the chasing fly (&) the future torque, lift, and thrust of the chasing fly, translates them into
angular velocity, vertical velocity and forward velocity and integrates them into a 3-D trajectory. The bottom figure is another simulation with
Eq. (15a) instead of Eq. (14a). 1 cm corresponds to 16 cm in space (see also Reichardt and Poggio, 1980). The parameter values used for this
simulations are k=0.0031g-cm-s~ %, r=0.001cm?-s™*, 7, =20ms, n=05g-cm~*!, s=0.0001 g-cm-s~*, 7,=60ms, h=1 g-cm™!, 1, =40ms.
The insets on the right show y(¢). Notice the (slight) oscillatory behavior of (?) in the “progressive” simulation. b shows the “potential” U(y, 9),
used to compute torque and thrust from the error angles y and § respectively. The simulations shown could be improved by better parameter
fitting. ¢ shows the scatter diagram between 3-D velocity v and distance ¢ for the middle simulation (delay=70ms). The continuous line
corresponds to the function T(g) used in this simulation.

details about the methods used for the 3-D computer
analysis and their limitations can be found in Bulthoff

and Fig. 4c shows the function T(g). In a similar way
Figs. 5b, 5c, and 5d show the functions used in the

et al. (1980, and in preparation).

The specific parameter values and functions D(y).
L(9), T(o) used for the simulation are inferred from
experimental data (Reichardt, 1973; Wehrhahn and
Reichardt, 1975; Wehrhahn, 1978; Biilthoff et al., in
preparation; Wagner, unpublished) and are given in
the legend. Figure 4 shows the “potential” —U(y, 9)
used in the simulation

aU(y,9)
oy

_oUw.9)

Dy(w)= L®)=—7g—

simulation of the chase shown in Fig. 5a, top.

The core of the simulation is represented by
Eq. (14a), corresponding to our normal Eg.(6). The
basic equivalence between Egs. (5) and (6) suggests that
the simulation should be also successful in the case of
the progressive hypothesis. This corresponds to sub-
stituting Eq. (14a) with

k(t)=— D[yt — 7)1 ulp(t =t )Pt = )] +r(0) .
(15a)
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Fig. 5 a Another stereoplot of a chase between Musca males (top). The middle figure shows a simulation according to the “normal” Eq. (14) and
the bottom figure shows another simulation according to the “progressive” Eq. (15a) [instead of Eq. (14a)]. The scale is the same as in a. The
insets on the right show y(t). The “progressive” simulation shows a clear oscillatory behavior. The parameters used are as for Fig. 4, except
7, =12.5ms.b A scatter diagram (with a delay of 12.5ms) of the angular velocity &, of the chasing fly (proportional to the torque) vs. y for the
middle simulation. The continuous line gives (modulus 1/k) the D(y) function assumed for the simulation. For the “progressive” simulation, the
D(y) used is twice as large, to compensate for the lack of response during regressive movement of the target’s image. ¢ A scatter diagram (with a

delay of 50ms) of the vertical component of the velocity of the chasing fly vs. the angle 9 for the (middle) simulation. The continuous line
corresponds to the L(9) used in the simulation (modulus the parameter 7). d A scatter diagram of the forward 3-D velocity of the chasing fly vs.
the distance between the two flies (with a delay of 80 ns), for the (middle) simulation. The continuous line corresponds to the function T(g) used
in the simulation. The chase has been filmed by Wehrhahn and will be analyzed in details in a forthcoming paper (Biilthoff et al., in preparation)

The lower portions of Figs. 4a and 5a show that the
resulting simulations (otherwise with the same param-
eters) are indeed satisfactory. Notice that we don’t
imply that males Musca use this control system during
chasing. It is possible, in fact, that the chasing system is
more similar to Eq. (14a) than to Eq. (15a). We merely
want to show the adequacy of a progressive-regressive
control system to achieve successful tracking and to
illustrate its properties. The oscillatory behaviour of
(1) with a period which equals twice the delay is clear

also in this more complex situation. We have neglect-
ed, in these simulations, the additional term N(t),
representing (Reichardt and Poggio, 1976), in a sto-
chastic sense, the “free will” of the fly. Various simu-
lations have shown that N(¢) (with physiological pa-
rameter values) may often affect the simulated trajec-
tories, even in a “qualitative” sense. We have, for
instance (with Wagner) examples in which the term
N(t) may change a successful landing on an object into
a “near miss”. Trajectories in landing situations are
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much more affected than trajectories in “chasing”
cases.

It must be stressed that these 3-D simulations
assume that the fly has only 3 degrees of freedom (the
fly is treated as a point in space), short of the 6 degrees
of freedom available to a rigid body. In addition, head
and legs movements are neglected. Figure Sa, for
instance, suggests that although the simulation may be
improved by better parameter fitting, its shortcomings
lie in the approximation of the fly as a point.

The model described here only refers to the smooth
control system involved in chasing. The role of sac-
cades will be discussed elsewhere (Biilthoff et al., in
preparation; Wehrhahn, in preparation).

3. Discussion

3.1. Main Results

The main result of this paper is the demonstration that
the two control systems described by the normal Eq. (6)
and by the progressive-regressive Eq.(6) are in a
certain sense equivalent on a smooth time scale [ie. a
time resolution which is long compared with the fly’s
reaction delay (20-40ms)]. This is encouraging be-
cause it validates for this particular case the more
general derivation of Eq. (4) by Poggio and Reichardt
(1973). The equivalence suggests that the theoretical
results obtained for Eq. (4) can be used also to describe
approximately, on a coarse time scale, a control system
of the type of Eq. (6).

In addition we have shown that solutions of either
Eq. (7') or Eq. (8 always have a characteristic asym-
ptotic oscillatory behavior with a period that depends
on the delay. This is the main difference on a fine time
scale between the “classical” Eq.(7) and the “pro-
gressive” Eq. (7). In the following, we discuss in more
detail some implications of the results of this paper.

3.2. Control Systems for Fixation and Tracking:
Implications

In a future paper we hope to discuss control systems
for fixation and tracking from a general point of view,
characterizing theoretically some of them within the
universe of known tracking systems. In this section we
only mention some implications of the results of this
paper from the point of view of guidance systems.
Equation (2) describes the bones of what is the
simplest and most used control system for tracking a
target. A term depending on the error angle directly
determines the correcting output of the system (in the
fly’s case its torque, roughly proportional to the result-

ing angular velocity). The resulting position control
[see for instance Eq.(5)] can be exhaustively charac-
terized, even for stochastic inputs.

In the simple, 1-dimensional framework described
by Eq. (2) position control is needed to achieve success-
ful tracking. For instance, simple proportional navi-
gation corresponding to

R {y(s)} =rip(t —e)

cannot achieve asymptotic stable tracking of targets
moving at constant angular velocity. This statement
can be detailed in the following terms. If ¢=0 and the
stochastic term N(t) replaces A, Eq. (2) suggests

[k +r(p)]p(1) = N(1)

where N(7) is a white gaussian process with spectral
density 2D and r(y) describes the 1 dependent opto-
motor (proportional) control. The asymptotic proba-
bility distribution of the error angle can be found to be
(interpreting the equation as a Stratonovich and not as
an Ito equation)

ry)>0, k>0,

r(y)
P(y)e—
and may therefore show a maximum for =0 [if r(y) is
maximum there]. This behavior may be characterized
as pseudofixation. Observe now that if the target drifts
with angular velocity proportional to ¢ the resulting
equation

[k +r(p)]-p(6)=N(®) +0

leads to an average slip speed [1p| larger than 0. The
situation may be different if translation effects are not
negligible. In this case proportional control can effec-
tively control a pursuer homing on a target.

The control system Eq. (6') is therefore quite in-
teresting because position information is critically
controlled by movement information (for instance,
when 1 =0 the reaction R is zero for every position ).
It has been long realized that asymmetric movement
detection, parametrized by position, can provide the
necessary position information, which is required for
tracking [see, for instance, Reichardt (1973) and
Poggio and Reichardt (1973), p. 198]. The results of
this paper make in fact explicit the basic equivalence
between the two control systems. On a coarse time
scale the progressive control system reduces to the
classical position control system. On a very fine time
scale the progressive system shows a new asymptotic
oscillatory behavior. It seems likely that these con-
clusions hold for a wide class of control systems of the
same basic type. Thus, we conjecture that for control
systems in which position information is at least in
part mediated (with a delay), by differences between



reactions to progressive and regressive motion the
following 2 properties hold

a) there is a characteristic asymptotic oscillatory be-
havior (possibly of small amplitude) with half period in
the order of the system’s effective delay;

b) there is an (asymptotic) equivalence with the corre-
sponding “classical” position controlled system, if the
trajectory y(f) is smoothed over time intervals in the
order of twice the system’s delay.

Several questions remain open. For instance, it is
not clear to what extent and in which sense the
differential equation (7') is more stable for large delays
than the classical differential equation (7). From a
more general prospective, it remains to compare the
two types of control in terms of optimal strategies
(differential games) for the pursuer. It is also clearly
interesting to characterize control systems which are a
mixture of Egs. (6) and (6'). We hope to analyze these
problems in a future paper.

3.3. The Flys
Predictions

Control of Flight: Experimental

The main biological implication of the analysis is that
most tracking and fixation experiments performed so
far and successfully described by equations of the type
of Egs.(5) or [(4) with e=0] (see Reichardt and
Poggio, 1980) are consistent with a progressive-
regressive control system [as Eq. (6')], since on the
time scale usually involved the two control systems are
indistinguishable.

In addition, we predict that the spectrum of (1)
should show a strong peak at a frequency of around
f=1/2¢, whenever a progressive control system is
involved to a significant extent. There are several
reasons that could make the detection of such an
oscillation quite hard, like for instance intrinsic va-
riability in the delay e. The period of the oscillation
may also depend significantly on the specific dynamics
of the response of the fly. On the whole, however, it
seems difficult to escape the conclusion that a
progressive-regressive control system must show an
oscillatory behavior in the error angle (1) (and in the
fly’s torque)?.

In this connection, it is important to realize that a
simple progressive-regressive description like Eg. (7')
cannot be expected to hold strictly for those v values
that represent a region of binocular overlap between
the two eyes. Therefore, oscillations in y(t) (or in the

2 The amplitude of the oscillations certainly depends on the
specific form of the progressive-regressive control system eventually
used by the fly. Thus the oscillation amplitude may be much smaller
than for the simple Eq. (8') studied in this paper
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fly’s torque) should be better searched outside the
region of binocular overlap. In addition our analysis
shows that the amplitude of the oscillations increases
with A and therefore with the average offset. As a
consequence, optimal closed loop conditions to detect
progressive-regressive oscillations require a) tracking
and not fixation experiments, b) target’s velocity as
high as stable tracking allows (see Reichardt and
Poggio, 1976). Interpretation of eventual experimental
oscillations will require some care, since the normal
Eq. (7) can also be expected to produce oscillations,
though not asymptotically, if the delay is not
negligeable.

Computer based analysis of free flight episodes
may also reveal whether these predictions are valid for
tracking Musca® (Biilthoff et al., in preparation).

3.4. Conclusions

It is clear that the problem of the detailed control
system used by the fly is essentially a problem at the
level of the neural algorithms and mechanisms re-
sponsible for the transduction between visual stimuli
and torque output. The basic equivalence of the classi-
cal and progressive control systems as judged from
the “trajectory” y(t) shows in fact that it is not easy to
distinguish between these control mechanism only on
the basis of phenomenological observations of closed
loop situations (either in the laboratory or in free flight).

In addition, a flicker based control system that
depends on || may be equivalent to a form or “pro-
gressive” control system and show asymptotic oscilla-
tions. Open loop experiments aimed at the underlying
mechanism (behavioral and physiological) are more
likely to provide a clear cut answer to the question
(Wehrhahn and Hausen, 1980; Hausen and Wehrhahn,
in preparation; Geiger, in preparation). This difficulty
of extrapolating from one level of understanding to
another is common in the analysis of complex systems.

The critical problem is represented here by the time
scale involved. The oscillations induced by a pro-
gressive control system take place on a time scale over
which the torque produced by the fly may not be
described as a continuous process. Its fine structure
remains in any case to be analyzed on this time grain.

3 It is conceivable that male and/or female flies use in fact a
mixture of (a) (formally) 1-input detectors and of (b) progressive-
regressive asymmetric movement detectors in order to compute
position information. The relative role of one mechanism versus
the other one may for instance depend on the velocity $ of the
target. Whether this “flicker” effect may be related to the position
dependent torque saccades detected in Drosophila during regressive
stimuli (Heisenberg and Wolf, 1979) is of course an interesting
possibility
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Control systems like Eq.(6') act in an almost bang-
bang way; the resulting oscillations could be in-
terpreted in the limit as a series of saccadic “spikes™
On the other hand, it is quite possible that the “open
loop” torque itself has a “grained®, “spiky” structure
on this time scale. We may reach here the limits of a
phenomenological description like Eq.(6"). At this
point a more detailed analysis at the level of wing
muscles and neurons is clearly needed and will lead to
more accurate descriptions probably different from
Eq. (6') or (6).

Unlike several biologists worrying about theory,
one should appreciate that theories do not themselves
provide definitive answers to biological questions.
Mathematics is, after all, the science of all possible
worlds. Models, like the ones analyzed in this paper,
are useful tools for generating a chain of thoughts and
experiments that might not otherwise have occurred.
Their specific level of description and range of validity
(like time scale) should always be kept in mind while
applying them to a specific biological problem. In
particular, terms in an equation do not have to
correspond to specific neurons.
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