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We outline a theoretical framework that leads from the computational
nature of early vision to algorithms for solving them and finally to a
specific class of analogue and parallel hardware for the efficient solution
of these algorithms. The common computational structure of many early
vision problems is that they are mathematically ill-posed in the sense of
Hadamard. Regularization analysis can be used to solve them in terms
of variational principles of a specific type that enforce constraints derived
from a physical analysis of the problem. Studies of human perception may
reveal whether principles of a similar type are exploited by biological
vision. We also show that the corresponding variational principles can
be implemented in a natural way by analogue networks. Specific electrical
and chemical networks for localizing edges and computing visual motion
are derived. We suggest that local circuits of neurons may exploit this
unconventional model of computation.

1. INTRODUCTION

One of the best definitions of early vision is that it is inverse optics: a set of
computational problems that both machines and biological organisms have to
solve. While in classical optics the problem is to determine the images of physical
objects, vision is confronted with the inverse problem of recovering three-
dimensional shape from the light distribution in the image. Most processes of early
vision such as stereo matching, computation of motion and all the ‘structure from’
processes can be regarded as solutions to inverse problems. This common
characteristic of early vision can be formalized: most early vision problems are
‘ill-posed problems’ in the sense of Hadamard. In this article we will show that
a mathematical theory developed for regularizing ill-posed problems leads in a
natural way to the solution of early vision problems in terms of variational
principles of a certain class. This is a theoretical framework for some of the
variational solutions already obtained in the analysis of early vision processes. It
shows how several other problems in early vision can be approached and solved.
In addition, it suggests a new model for visual computation that may be
biologically significant. A large gap exists at present between computational
theories of vision and their possible implementation in neural hardware. The model
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of computation provided by the digital computer is clearly unsatisfactory for the
neurobiologist, given the increasing evidence that neurons are complex devices,
very different from the simple digital switches as portrayed by the McCulloch &
Pitts (1943) type of threshold neurons. It is especially difficult to imagine how
networks of neurons may solve the equations involved in vision algorithms in a
way similar to digital computers. We suggest an analogue model of computation
in electrical or chemical networks for a large class of vision problems, that maps
more easily into biologically plausible mechanisms. Ill-posed problems in early
vision can be ‘solved’, according to regularization theories, by variational
principles of a specific type. A natural class of system for solving these variational
problems are electrical, chemical or neuronal networks. We show how to derive
specific networks for solving several low-level vision problems, such as the
computation of visual motion and edge detection. '

2. VARIATIONAL SOLUTIONS TO VISION PROBLEMS

In recent years, the computational approach to vision has begun to shed some
light on several specific problems. One of the recurring themes of this theoretical
analysisistheidentification of physical constraints that make a given computational
problem determined and solvable. Some of the early and most successful examples
are the analyses of stereo matching (Marr & Poggio 1976, 1979; Grimson 19814, b;
Mayhew & Frisby 1981; Nishihara 1984; Kass 1984; for a review, see Nishihara
& Poggio 1984) and structure from motion (Ullman 1979a, b). In these studies
constraints such as continuity of three-dimensional surfaces in the case of stereo
matching and rigidity of objects in the case of structure from motion play a critical
role for obtaining a solution.

More recently, variational principles have been used to introduce specific
physical constraints. A variational principle defines the solution to a problem as
the function that minimizes an appropriate cost function. Many problems can be
formulated in this way, including laws that are normally expressed in terms of
differential equations. In physics, for instance, most of the basic laws have a
compact formulation in terms of variational principles, that require the minimiz-
ation of a suitable functional, such as the Lagrangian for classical mechanics.

For instance, the problem of interpolating visual surfaces through sparse depth
data can be solved by minimizing functionals that embed a constraint of
smoothness (Grimson 198156, 1982 ; Terzopoulos 1983). Thus, the surface that best
interpolates the data minimizes a certain cost functional which measures how much
the surface deviates from smoothness. Computation of the motion field in the image
can be successfully performed by finding the smoothest velocity field consistent
with the data (Horn & Schunck 1981; Hildreth 1984a, b): in other words among
all possible velocity fields that are consistent with the data a solution can be found
by choosing the velocity field that varies the least. In a similar way, shape can
be recovered from shading information in terms of a similar variational method
(Ikeuchi & Horn 1981). The computation of subjective contours (Ullman 1976;
Brady et al. 1980; Horn 1981), of lightness (Horn 1974) and of shape from contours
(Barrow & Tennenbaum 1981; Brady & Yuille 1984) can also be formulated in
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terms of variational principles. Terzopoulos (1984, 1985) has recently reviewed the
use of a certain class of variational principles in vision problems within a rigorous
theoretical framework.

We wish to show that these variational principles follow in a natural and rigorous
way from the ill-posed nature of early vision problems. We will then propose a
general framework for ‘solving’ many of the processes of early vision.

3. ILL-POSED PROBLEMS

Hadamard first defined a mathematical problem to be well-posed when its
solution (i) exists; (ii) is unique and (iii) depends continuously on the initial data
(notice that for the solution to be robust against noise in practice the problem
must be not only well-posed but also well-conditioned).

Most of the problems of classical physics are well-posed, and Hadamard argued
that physical problems had to be well-posed. ‘Inverse’ problems, however, are
usually ill-posed. Inverse problems can be obtained from the direct problem by
exchanging the role of solution and data. Consider, for instance,

y = Az, (1)

where A4 is a known operator. The direct problem is to determine y from z, the
inverse problem is to obtain z when y (‘the data’) is given. Though the direct
problem is usually well-posed, the inverse problem is usually ill-posed, when z and
y belong to a Hilbert space.

Typical ill-posed problems are analytical continuation, back-solving the heat
equation, super-resolution, computer tomography, image restoration and the
determination of the shape of a drum from its frequency of vibration, a problem
which was made famous by Marc Kac (1966). In early vision, most problems are
ill-posed because the solution is not unique (but see later the case of edge detection),
since the operator corresponding to 4 is usually not injective, as in the case of shape
from shading, surface interpolation and computation of motion (see Poggio & Torre
1984 ; Bertero et al. 1986).

4. STANDARD REGULARIZATION METHODS

Most ill-posed problems are not sufficiently constrained. To regularize them and
make them well-posed, one has to introduce generic constraints on the problem.
In this way, one attempts to force the solution to lie in a subspace of the solution
space, where it is well defined. The basic idea of regularization methods is to restrict
the space of acceptable solutions by choosing the function that minimizes an
appropriate functional. Specific and rigorous regularization theories for ‘solving’
ill-posed problems have been developed during the past years (see especially
Tikhonov 1963; Tikhonov & Arsenin 1977; Nashed 1974, 1976). We will refer
to all techniques, that involve the minimization of a quadratic functional, as
standard regularization theory. The regularization of the ill-posed problem of
finding z from the data y such that 4z = y requires the choice of norms || - || (usually
quadratic) and of a stabilizing functional ||Pz|. The choice is dictated by
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mathematical considerations, and, most importantly, by a physical analysis of the
generic constraints on the problem. Standard regularization theory consists of
three main methods (Poggio & Torre 1984).

(i) Among z that satisfy || Pz| < C, where C is a constant, find z that minimizes

[Az—yll. (2)
(ii) Among z that satisfy | 4z—y| <, find z that minimizes
(| Pzl|. (3)
(ili) Find z that minimizes
ldz—yl*+ Al Pz]?, (4)

where A is a regularization parameter (A = ¢/C where € and € are used in equations
(2) and (1), respectively).

The first method consists of finding the function z that satisfies the constraint
| Pz|| < C and best approximates the data. The second method computes the
function z that is sufficiently close to the data (¢ depends on the estimated errors
and is zero if the data are noiseless) and is most ‘regular’. In the third method,
the regularization parameter A controls the compromise between the degree of
regularization of the solution and its closeness to the data. Regularization theory
provides techniques to determine the best A (Tikhonov & Arsenin 1977; Wahba
1980). It also provides a large body of results about the form of the stabilizing
functional P that ensure uniqueness of the result and convergence. For instance,
it is possible to ensure uniqueness in the case of Tikhonov’s stabilizing functionals
(also called stabilizers of pth order) defined by

vd drz\?
1P2]* = | 2 c,(§) (a?) dg, ()
r=0

where c,(£) are non-negative weighting factors. Equation (5) can be extended in
natural way to several dimensions. If one seeks regularized solutions of (1) with
P given by (5) in the Sobolev space W2 of functions that have square-integrable
derivatives up to pth order, the solution can be shown to be unique and stable under
mild conditions (the data must be given at a set of points that defines a unique
functional in the null space of the smoothness functional), if 4 is linear and
continuous. It turns out that most stabilizing functionals used so far in early vision
are of the Tikhonov type (see also Terzopoulos 1984). They all correspond to
either interpolating or approximating splines (for method 2 and method 3,
respectively).

5. EXAMPLE 1: MOTION

The claim by Poggio & Torre (1984) is that variational principles introduced
recently in early vision for the problem of shape from shading, computation of
motion, and surface interpolation are exactly equivalent to the standard regular-
ization techniques we described. The associated uniqueness results are directly
provided by regularization theory. We briefly discuss the case of motion compu-
tation in its recent formulation by Hildreth (19844, b).
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FicurE 1. Decomposition and ambiguity of the velocity field. (@) The local velocity vector V(s)
in the image plane is decomposed according to (6) into components perpendicular and
tangent to the curve. (b) Local measurements cannot measure the full velocity field: the
circle undergoes pure translation: the arrows represent the perpendicular components of
velocity that can be measured from the images. Redrawn from Hildreth (1984a).

Consider the problem of determining the two-dimensional velocity field along
a contour in the image. Local motion measurements along contours provide only
the component of velocity in the direction perpendicular to the contour. The
component of velocity tangential to a smooth contour is invisible to a local detector
that examines a restricted region of the contour. Figure 1 shows how the
local velocity vector V(s) is decomposed into a perpendicular and a tangential

component to the curve
V(s) = v'(s) T(s)+v*(s) N(s). (6)

The component v*(s) and direction vectors T(s) and N(s), are given directly by
the initial measurements, the ‘data’. The component »'(s) is not and must be
recovered to compute the full two-dimensional velocity field V(s). Thus the
‘inverse’ problem of recovering V(s) from the data v is ill-posed because the
solution is not unique. Mathematically, this arises because the operator K defined
b

Y V-N =KV (7)

is not injective. Equation (7) describes the imaging process as applied to the
physical velocity field ¥ which consists of the  and y components of the velocity
field on the image plane.

Intuitively, the set of measurements given by v(s) over an extended contour
should provide considerable constraint on the motion of the contour. An additional
generic constraint, however, is needed to determine this motion uniquely. For
instance, rigid motion on the plane is sufficient to determine ¥ uniquely but is very
restrictive, since it does not cover the case of motion of a rigid object in space.
Hildreth (1984a) suggested, following Horn & Schunck (1981), that a more general
constraint is to find the smoothest velocity field among the set of possible velocity
fields consistent with the measurements. The choice of the specific form of this
constraint was guided by physical considerations (the real world consists of solid
objects with smooth surfaces whose projected velocity field is usually smooth) and
by mathematical considerations, especially uniqueness of the solution. Hildreth



308 T. Poggio and C. Koch

proposed two algorithms: in the case of exact data the functional to be minimized
is a measure of the smoothness of the velocity field

Vv
ipvie= [(50) as ®)

subject to the measurements v'(s). Since in general there will be error in the
measurements of v1, the alternative method is to find ¥ that minimizes

||KV—vl||2+Aj (%[_:)2 ds. (9)

It is immediately seen that these schemes correspond to the second and third
regularizing method, respectively (the first regularizing method corresponds, with
the same P, to rigid translation in the image plane). Uniqueness of the solutions,
proved by Hildreth for the case of (8), is a direct consequence for both (8) and (9)
of standard theorems of regularization theories. In addition, other results can be
used to characterize the behaviour of the correct solution depending on the
smoothing parameter A.

6. EXAMPLE 2: EDGE DETECTION

Poggio et al. (1985) have recently applied standard regularization techniques to
another classical problem of early vision: edge detection. Edge detection, intended
as the process that attempts to detect and localize changes of intensity in the image
(this definition does not encompass all the meanings of edge detection) is a problem
of numerical differentiation (Torre & Poggio 1985). Notice that differentiation is
a common operation in early vision and is not restricted to edge detection. The
problem is ill-posed because the solution does not depend continuously on the data.
The problem is to find the solution z to y = Az with (4z)(x) = [F2(s)ds. Thus, z
is the derivative of the data y.

The intuitive reason for the ill-posed nature of the problem can be seen by
considering a function f(x) perturbed by a very small (in L, norm) ‘noise’ term
e sin Qz. The terms f(x) and f(x)+ € sin £2x can be arbitrarily close for very small ¢,
but their derivatives may be very different if € is large enough. This simply
means that a derivative operation ‘amplifies’ high-frequency noise.

In one dimension, numerical differentiation can be regularized in the following
way. The ‘image’ model is y; = f(x;) +¢;, where y, is the data and ¢; represent errors
in the measurements. We want to estimate f*. We choose a regularizing functional
I PfIl = [(f”(x))?dx, where f” is the second derivative of f. This choice corresponds
to a constraint of smoothness on the intensity profile. Its physical justification is
that the (noiseless) image is smooth because of the imaging process: the image is
a band-limited function and has therefore bounded derivatives. The second
regularizing method (no noise in the data) is equivalent to using interpolating cubic
splines for differentiation. The third regularizing method, which is more natural
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since it takes into account errors in the measurements, leads to the variational
problem of minimizing (see Rheinsch 1967)

Z(?/i—f(wi))z-*?\f(f”(x))zdx- (10)

Poggio et al. (1985) have shown (i) that the solution f(x) of this problem can be
obtained by convolving the data y, (assumed on a regular grid and satisfying
appropriate boundary conditions) with a convolution filter B, and (ii) that the filter
R is a cubic spline with a shape very close to a gaussian and a size controlled by
the regularization parameter A (see figure 2). Differentiation can then be accom-
plished by convolution of the data with the appropriate derivative of this filter.
The optimal value of A can be determined for instance by cross-validation and
other techniques. This corresponds to finding the optimal scale of the filter (see
Poggio & Torre 1984 ; Poggio et al. 1983).

(@) == P filter
—=— gaussian filter

AN

1r(b)
( 1/A=00005
1/A=0.5 =005 =0.005
—1 increasing A --»

effect of the smoothing parameter A on R’

Ficure 2. The regularized edge detection filter. (a¢) The convolution filter obtained by
regularizing the ill-posed problem of edge detection with method (III) (solid line; Poggio
etal. 1985). It is a cubic spline, very similar to a gaussian (dotted line). (b) The first derivative
of the filter for different values of the regularizing parameter A, which effectively controls
the scale of the filter. This one-dimensional profile can be used for two-dimensional edge
detection by filtering the image with oriented filters with this transversal cross-section and
choosing the orientation with maximum response (see Canny 1983). The second derivative
of the filter (not shown here) is quite similar to the second derivative of a gaussian.

These results can be directly extended to two dimensions to cover both edge
detection and surface interpolation and approximation. The resulting filters are
very similar to the derivatives of a gaussian extensively used in recent years (Marr
& Poggio 1979; Marr & Hildreth 1980; see also Canny 1983 and Torre & Poggio
1985).

Other problems in early vision such as shape from shading (Ikeuchi & Horn 1981)
and surface interpolation (Grimson 1981b, 1982 ; Terzopoulos 1983 ; Blake 19845),
in addition to the computation of velocity, have been formulated and ‘solved’ in
similar ways using variational principles of the type suggested by regularization
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techniques (although this was not realized at the time). Other problems such as
stereo and structure from motion can be approached in terms of regularization
analysis (see Poggio & Torre 1984).

7. PHYSICAL PLAUSIBILITY OF THE SOLUTION

Uniqueness of the solution of the regularized problem, which is ensured by
formulations such as equations (2)—(4), is not the only (or even the most relevant)
concern of regularization analysis. Physical plausibility of the solution is the most
important criterion. The decision regarding the choice of the appropriate stabilizing
functional cannot be made judiciously from purely mathematical considerations.
A physical analysis of the problem and of its generic constraints play the main
role. Standard regularization theory provides a framework within which one has
to seek constraints that are rooted in the physics of the visual world. This is, of
course, the challenge of regularization analysis.

In our example of the computation of motion the constraint of smoothness is
justified by the observation that the projection of three-dimensional objects in
motion onto the image plane tends, in a probabilistic sense, to yield smooth
velocity fields (see Hildreth 1984a). In the case of edge detection the constraint
of a small norm for the derivative of image intensity is directly motivated by the
band-limiting properties of the optics. In the case of motion, however, and more
dramatically in the case of surface reconstruction, the constraint of smoothness
is not always correct. This suggests that more general stabilizing functionals are
needed to deal with the general problem of discontinuities (see Conclusion).

A method for checking the physical plausibility of a variational principle is, of
course, computer simulation. A simple general technique we suggest here is to use
the Euler-Lagrange equation associated with the variational problem. In the
computation of motion, Yuille (1983) has obtained the following sufficient and
necessary condition for the solution of the variational principle (8), to be the
correct physical solution

T (0*V/os?) =0

where T is the tangent vector to the contour and V is the true velocity field. The
equation is satisfied by uniform translation or expansion and by rotation only if
the contour is polygonal. These results suggest that algorithms based on the
smoothness principle will give correct results, and hence be useful for computer
vision systems, when (i) motion can be approximated locally by pure translation,
rotation or expansion, or (ii) objects have images consisting of connected straight
lines. In other situations, the smoothness principle will not yield the correct
velocity field, but may yield one that is qualitatively similar and close to human
perception (Hildreth 1984a, b). In the corresponding case for edge detection
(intended as numerical differentiation), the solution is correct if and only if the
intensity profile is a polynomial spline of appropriate degree.

From a more biological point of view, a careful comparison of the various
‘regularization’ solutions with human perception promises to be a very interesting
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area of research, as suggested by Hildreth’s work on the computation of motion.
For some classes of motions and contours, the solution of (8) and (9) is not the
physically correct velocity field. In these cases, however, the human visual system
also appears to derive a similar, incorrect velocity field (Hildreth 1984a, b).

8. ANALOGUE NETWORKS FOR SOLVING VARIATIONAL PROBLEMS

As suggested by Terzopoulous (1984a), analogue networks, chemical, electrical
or mechanical, are a natural computational model for solving variational principles.
We know from physics that the behaviour of such systems, in fact the behaviour
ofany physical system, can be described by using variational principles (MacFarlane
1970). In the frictionless world of classical mechanics a system’s state variables
will behave in such a way as to minimize the associated Lagrangian. Electrical
network representations have been constructed for practically all of the field
equations of physics, many of them are equivalent to variational principles (for
an electrical network implementation of Schrodinger’s equation see Kron (1945)).
A fundamental reason for the natural mapping between variational principles and
electrical or chemical networks is Hamilton’s least action principle (for more
details see appendix 1).

The class of variational principles that can be computed by analogue networks
is dictated by Kirchhoff’s current and voltage laws, which simply represent
conservation and continuity restrictions satisfied by each network component
(appropriate variables are usually voltage and current for electrical networks and
affinity, that is, chemical potential, and chemical turnover rate for chemical
systems). Kirchhoff’s current and voltage laws provide the unifying structure of
network theory. A large body of theoretical results is available about networks
satisfying them, including classical thermodynamics (Oster et al. 1971). Notice that
Kirchhoff’s laws are physical restatements of the topological properties of the
dynamic space. For electrical networks they correspond to conservation of flows
(Kirchhoft’s current law) and uniqueness of potential (Kirchhoff’s voltage law).

For a network containing only sources and linear resistances, Hamilton’s least
action principle implies Maxwell’s minimum heat theorem: the distribution of
voltages and currents is such that it minimizes the total power dissipated as heat.
These results can be extended to nonlinear circuit components (MacFarlane 1970;
Oster & Desoer 1971; Poggio & Koch 1984) but in the following we will restrict
ourselves to linear resistances (possibly negative, see appendix 3). Consider for
simplicity a network of discrete elements. The power dissipated by each linear
resistance in the circuit is a quadratic term of the form

I,V (11)
where I is the current through and V,, the voltage difference across the resistive

process 7. It follows that any network consisting of linear resistances and voltage
sources K; minimizes the following associated quadratic functional

23— B 1, (12a)
k i
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where the second sum includes all the batteries. For a network of resistances and
current sources /; the functional that the network minimizes is given by

%gk Vi—gli Vi (120)

where the second sum includes all the current sources and g, = 1/7,. In the limit,
as the meshes of the circuit become infinitesimally small, the network solves the
continuous variational problem, and not simply its discrete approximation.

It is then easy to show the equivalence of (12) and the standard regularization
principle equation (4). A proof is given in appendix 2. Thus, electrical networks
of linear resistances and batteries (or current sources) can solve quadratic
variational principles of the form of (4). The solution is unique when (4) yields a
unique solution (which is usually the case, see Poggio & Torre (1984)).

Electrical networks of resistances and batteries do not have any dynamics. In
practice, however, small capacitances will always be present and the stability of
the network must then be considered. It turns out that networks implementing
regularization principles of the form of (4) are indeed stable, under the same
conditions that ensure a unique solution (see appendix 3).

An equivalent way to see how electrical networks can implement variational
principles of the form of (4) is to consider the associated Euler—Lagrange equations.
Since the functional to be minimized is quadratic, the Euler-Lagrange equations
are linear, of the form @z = b (see appendix 2 for a definition of ). They have a
unique solution z, corresponding to the unique solution of the variational principle.
In the discrete case, these equations correspond to n linear, coupled algebraic
equations. We claim that these equations can be implemented in a network
containing only linear resistances and sources, where the vector b, which depends
on the data, can always be represented in terms of current or voltage sources.
The matrix ¢ corresponds to the symmetrical, real matrix of the network
resistances. To see this, one sets up one mesh for every variable z;, (with the
associated mesh current I;). Each mesh consists of a battery £, in series with one
resistance r, and n—1 resistances of some constant value k. Moreover, a simple
auxiliary circuit connects the ¢th and the jth mesh via an auxiliary resistance
R;; = R;; for every non-zero entry g;; in (. The associated circuit current flows not
only through E;;, but also through the resistance k£ of the ith mesh and & of the
jth mesh. The values of the resistances are then given by r, = X, ¢,,— (n—1) k and
Ry = R;; = —k(k/q;;+2). The scheme requires exactly as many resistances r; and
R;; as there are non-zero entries in ¢. Although this procedure will always yield
an electrical network with linear elements implementing @z = b, its physical
realization might require negative resistances.

As pointed out in the context of vision (earlier, Horn (1974) proposed an
analogue implementation of the lightness computation and Ullman (1979b) a
relaxation technique working in locally connected simple networks for the shape
from motion problem) a significant advantage of analogue networks is their
extreme parallelism and speed of convergence (Koch et al. 1985). Furthermore,
resistive networks are robust against random errors in the values of the resistances
(Karplus 1958). A disadvantage is the limited precision of the analogue signals.
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9. AN EXAMPLE: CIRCUITS FOR THE VELOCITY FIELD COMPUTATION

We will consider next some specific networks for solving the optical flow
computation. The simpler case is when the measurements of the perpendicular
component of the velocity, v}, at n points along the contours, are exact. In this
case, the discretized Euler-Lagrange equations, corresponding to the second
regularization method, (8), are (Hildreth 1984a)

(2+K%)”iT“”iT+1 z  =d;, (13)

where «? is the curvature of the curve at location 4, d; is a function of the data
v; and the curve and v is the unknown tangential component of the velocity v;
at location ¢ to be computed. Figure 3a, b shows two simple networks that solve
(13), where one network is the dual of the other. The equation describing the ith
node, in the case of figure 35, is

(29+9) Vi—gVisa—9Vioa = 1 (14)

where V; is the voltage, corresponding to the unknown v, and I, the injected
current at node ¢, corresponding to the measurement v} It is surprising that this
implementation does not require negative resistances. When the constraints are
satisfied only approximately, (9), the equations are

(2+62)Vz xt+1 sz 1+c V

(2+612n) Vyi— Vyi+1 Vi ¢ Vi d .
where e,, and e,, depend on the contour and V,, and V,, are the voltages
corresponding to the x and y component of the unknown velocity at location 3.
The corresponding network is shown in figure 3¢. The resistances c¢;, however, can
be either positive or negative, and may therefore require active components such
as operational amplifiers. More precisely, physically realizable linear resistances,
whether in electrical or in chemical systems, must dissipate energy, that is, they
are constrained to the upper right and the lower left quadrant in the I-V plane
and can thus only be positive. There are at least three options for implementing
negative resistances by using basic circuit components. (i) The positive and
negative resistances can be replaced in a purely resistive network by inductances
and capacitances, with impedance iwl and —¢/(wC') respectively. The network
equations are then formulated in terms of the currents and voltages at the fixed
frequency w. (ii) The negative resistance can be implemented by the use of
operational amplifiers or similar active circuit elements (see Jackson 1960). (iii) One
may exploit the negative impedance regions in such nonlinear systems as the tunnel
diode or a Hodgkin—Huxley like membrane.

We have devised similar analogue networks for solving other variational
problems (Poggio & Koch 1984) arising from regularization analysis of several early
vision problems such as edge detection (Poggio et al. 1985) and surface interpolation
(Terzopoulos 1983). These networks are analogue solutions to certain kinds of
spline interpolation and approximation problems. For instance, in the case of
surface interpolation the analogue network solves the biharmonic equation which

12 Vol. 226. B
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(@) E K Ein

Fieure 3. Three resistive networks computing the smoothest velocity field. The first two
networks, duals of each other, correspond to the situation where the constraints imposed
by the data are to be satisfied exactly. In (@) the equation for the current, which corresponds
to the desired T in mesh ¢, is given by (2r+7r;) I,—rl,,,—rl,_, = E,, where the value of
the battery E,; depends on the velocity data v}, at location <. In (b) the voltage at node %,
corresponding to v/, is given by (29 +g¢,) V;—g V11 —gV;—, = I;, where the injected current 7,
depends on the velocity data. In this network sampling the voltage between nodes
corresponds to linear interpolation between the node values. Network (c), consist-
ing of two interconnected networks of the type shown in (b), solves the velocity
field problem when the data are not exact. The equations for the ith nodes are (2g, +g,,)
Vei=92 Vaisa =92 Versti Vyy = day and 2y +9y) Vy=9y Voo =9y Vyirtes Vo = dy,.

However, unlike the two purely passive networks shown above, an active element may be

required, since the resistive cross-term ¢;, relating the x and the y components of velocity,

can be negative. Such a negative resistance can be mimicked, for instance, by operational
amplifiers.

is the Euler-Lagrange equation corresponding to the variational problem associated
with thin-plate splines. The stabilizing functionals used in regularization analysis
of vision problems typically lead to local and limited connections between the
components of the network.

Note that in general there is no unique network implementing a particular
variational principle (witness the circuits in figure 3a, b, which are the dual of each
other). For instance, graded networks of the type proposed by Hopfield in the
context of associative memory (Hopfield 1984) can solve standard regularization
principles, provided Hopfield’s output function g;, characterizing each neuron, is
linear in V; (for a further discussion see Koch et al. 1985).
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10. SOLVING ILL-POSED PROBLEMS WITH BIOLOGICAL HARDWARE

Analogue electrical networks are a natural hardware for computing the class of
variational principles suggested by regularization analysis. Because of the well-
known isomorphism between electrical and chemical networks (see, for instance,
Busse & Hess 1973; Eigen 1974) that derives from the common underlying
mathematical structure, appropriate sets of chemical reactions can be devised, at
least in principle, to ‘simulate’ exactly the electrical circuits. Figures 4 and 6a
show chemical networks that are equivalent (in the steady state) to the electrical
circuit of figure 3, c.

(a)
S S S
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A = =C=

T
M, M, M,

Fioure 4. Two chemical networks computing the smoothest velocity field. Two examples of
chemical networks solving the motion problem for exact measurements. They are equivalent,
under steady-state conditions, to the electric circuit of figure 3b. (a) A diffusion-reaction
system. A substance A (the concentration of which corresponds to the desired »7) diffuses
along a cable while reacting with an extracellular substance S (first order kinetics). The
corresponding On-rate k; varies from location to location. This could be achieved by a
differential concentration of an enzyme catalysing the reaction or by varying the properties
of the membrane where the reaction has to take place. The Off-rates can either be constant
or vary with location. The inputs v} are given by the influxes of substance A. (b) A lumped
chemical network, where n different, well-mixed substances, interact with each other and
with the substrate S. Assuming first-order kinetics, these reactions can mimick a linear,
positive resistance under steady-state conditions. The input is given by the influx My and
the output by the concentration of X.

Electrical and chemical systems of this type therefore offer a computational
model for early vision that is quite different from the digital computer. Equations
are ‘solved’ in an implicit way, exploiting the physical constraints provided by
Kirchhoff’s laws. It is not difficult to imagine how this model of computation could
be extended to mixed electrochemical systems by the use of transducers, such as
chemical synapses, that can decouple two parts of a system, similarly to operational
amplifiers (Poggio & Koch 1984).

Could neural hardware exploit this model of computation ? Increasing evidence
shows that electrotonic potentials play a primary role in many neurons (Schmitt
et al. 1976) and that membrane properties such as resistance, capacitance and
equivalent inductance (arising through voltage and time-dependent conductances;

12-2
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Ly

Figure 5. Neuronal network computing the smoothest velocity field. This schematic figure
illustrates an hypothetical neuronal implementation of the regularization solution to the
motion problem. A dendrite, acting both as pre- and post-synaptic element has a membrane
resistance that can vary with location. It can implement under steady-state conditions the
circuit 1b. The inputs, corresponding to the measurements »', are given by synaptically
mediated current, while the output voltages, corresponding to the desired »", are sampled
by dendro-dendritic synapses. The membrane resistance can be locally controlled by
suitable synaptic inputs, corresponding to the curvature of the contour, from additional
synapses that open channels with a reversal potential close to the resting potential of the
dendrite.

see, for instance, Cole 1968 ; Koch 1984) may be effectively modulated by various
types of neurotransmitters, acting over very different time scales (Marder 1984;
Schmitt 1984). Dendrodendritic synapses and gap junctions serve to mediate
graded, analogue interactions between neurons and do not rely on all-or-none
action potentials (Graubard & Calvin 1976; Shepherd & Brayton 1979).

When implementing electrical networks in equivalent neuronal hardware, one
can draw upon a large number of elementary circuit elements (for possible neuronal
implementations see figures 5 and 6 ; for more details as regards the ‘computational
properties’ of membranes, synapses and neurons see Koch & Poggio (1985)).
Patches of neuronal membrane or cytoplasm can be treated as resistance and
capacitance. Voltage sources may be mimicked by synapses on dendritic spines or
thin dendrites (Koch & Poggio 1983), whereas synapses on large dendrites may

Fieure 6. Computing the smoothest velocity field using noisy measurements. The figure shows
a chemical and a neuronal implementation of (11). The cross-term ¢; (15), which can be
negative, is mimicked by either an appropriate nonlinear chemical reaction between the two
substances A, and B, or by two reciprocal chemical synapses. If the corresponding cross-term
in (11) is negative, the synapse must be inverting, presynaptic depolarization leading to
a postsynaptic hyperpolarization.
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act as current sources. Chemical synapses could effectively serve to decouple
different parts of a network (see Poggio & Koch 1984). Chemical processes such
as the reactions associated with postsynaptic effects or with neuropeptides could
also be thought as part of a complex electrochemical network. Obviously, the
analogy cannot be taken too literally. It would be very surprising to find the exact
neural analogue of the circuit of figure 5 somewhere in the central nervous system.
We are convinced, however, that the style of computation represented by analogue
circuits represents a very useful model for neural computations as well as a
challenge for future very large scale integration circuit designs.

11. CONCLUSION

The concept of ill-posed problems and the associated regularization theories seem
to provide a satisfactory theoretical framework for much of early vision. This new
perspective justifies the use of variational principles of a certain type for solving
specific problems, and suggests how to approach other early vision problems. It
provides a link between the computational (ill-posed) nature of the problems and
the computational structure of the solution (as a variational principle). We have
also discussed computational ‘hardware’ that is natural for solving variational
problems of the type implied by standard regularization methods. The approach
can be extended to other sensory modalities and to some motor control problems.
Furthermore, the linearregularizing operators corresponding to standard, quadratic
regularization principles can be synthetized in terms of simple associative learning
schemes (Poggio & Hurlbert 1984) for which Kohonen (1984) has suggested simple
neural implementations.

Despite its attractions, this theoretical synthesis of early vision also shows the
limitations that are intrinsic to the variational solutions proposed so far, and in
any case to the standard (Tikhonov’s) forms of the regularization approach. The
basic problem is the degree of smoothness required for the unknown function z that
has to be recovered. If z is very smooth, then it will be robust against noise in the
data, but it may be too smooth to be physically plausible. For instance, in visual
surface interpolation, the degree of smoothness obtained from a specific form of
(4) and (5), corresponding to so-called thin plate splines, smoothes depth discon-
tinuities too much and often leads to unrealistic results (but see Terzopoulos
1984).

Different (for instance non-quadratic) variational principles may be used to
attack the general problem of discontinuities (see Blake 1984a; Geman & Geman
1984; Marroquin 1984). Non-quadratic, that is non-standard, variational principles
may also be needed to solve another fundamental problem in early vision, the
problem of integrating different sources of information, such as stereo, motion,
shape from shading, etc. This problem is ill-posed, not just because the solution
isnot unique (the normal case), but because the solution is usually over-constrained
and may not exist (because of noise in the data). For instance, the problem of
combining several different sources of surface information may easily lead to
non-quadratic regularization expressions (though different ‘non-interacting’ con-
straints can be combined in a convex way, see Terzopoulos (1984)). These
minimization problems will in general have multiple local minima.
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The variational principles mostly considered for early vision processes, derived
from standard regularization theory, are quadratic and therefore lead to linear
networks. As we saw, this is not always to be expected. Though this is a topic that
still needs to be explored, nonlinearities may greatly expand the rather restricted
universe of computations that can be performed in terms of quadratic minimization
principles. Again, analogue networks may be used to solve these minimization
problems, that will in general have multiple local minima corresponding to the
zeroes of the mixed potential (Brayton & Moser 1964 ; Oster et al. 1971). Schemes
somewhat similar to stochastic minimization (Metropolis et al. 1953) or annealing
(Kirkpatrick et al. 1983; Hinton & Sejnowski 1983) may be implemented by
appropriate sources of gaussian noise driving the analogue network. The associated
differential equation describing the dynamics of the system is then a stochastic
differential equation.

Koch et al. (1985) show that nonlinear, graded networks like those used by
Hopfield & Tank (1985) to compute next-to-optimal solutions of the travelling
salesman problem (using a non-quadratic variational principle; see also Hopfield
(1984)) may be used to solve the non-quadratic variational problem of reconstruct-
ing surfaces from sparsely sampled depth data in the presence of discontinuities
like edges (Marroquin 1984). Needless to say, a number of biophysical mechanisms,
such as somatic and dendritic action potentials, interactions between conductance
changes, voltage and time-dependent conductances, neuropeptides, etc. (Koch &
Poggio 1985), are likely to be used by neurons and patches of membrane to
implement nonlinear operations.

The idea of vision problems as ill-posed problems originated from a conversation
with Professor Mario Bertero of the University of Genoa about edge-detection work
by V. Torre and T.P. (see Poggio & Torre 1984). We are grateful to Alan Yuille,
Ellen Hildreth, Dimitri Terzopoulos, Jose Marroquin, Eric Grimson and Tom
Collett for many discussions and comments and for critically reading the manuscript.
We thank Linda Ardrey for drawing the figures and Carol Bonomo for typing the
text. This report describes research done within the Artificial Intelligence
Laboratory and the Center for Biological Information Processing (Whitaker
College) at the Massachusetts Institute of Technology. Support for the A.I.
Laboratory’s research in artificial intelligence is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Office of Naval
Research contract N00014-80-C-0505. The Center’s support is provided in part by
the Sloan Foundation and in part by Whitaker College.

ArPENDIX 1

The main form of Hamilton’s postulate of least action states that the motion
of a dissipationless dynamical system, free from external disturbance, from a
configuration at time ¢, to another configuration at time ¢,, is such that the integral
of its Lagrangian L = T'— U is stationary on the path followed. That is

¢
JzLdt = extremum. (1.1)

t
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If one extends Hamilton’s postulate to dissipative systems acting under external
forces it can be shown that

¢
J ’ (L+ W)dt = extremum (1.2)
ty
must hold, where W is the virtual work done by the dissipative elements (for
example resistances) and the sources.

There are two specialized variational principles for networks composed entirely
of sources and linear or nonlinear dissipative elements. In such a network, the
actual distribution of the currents will be such as to minimize the total content

@ of the system where ¢ is given by
1

G= f vds. (1.3)
0

Conversely, the distribution of voltages will be such as to minimize the total

co-content J of the system where

14
J=J v do. (1.4)

If the network considered contains only linear resistances and sources, then both
of the above principles reduce to Maxwell’s minimum heat theorem: the distribution
of voltages and currents will be such as to minimize the total power dissipated as
heat (MacFarlane 1970).

APPENDIX 2

THEOREM. Regularization principles of the form of (4) are equivalent to quadratic
minimization problems in a Hilbert space. The latter have the form of the functionals
minimaized by networks of sources and resistances (12).

Proof. We assume a Hilbert space with an inner product < -, - >, which defines a

quadratic norm | -|. Equation (4) shows that an ill-posed problem can be
formulated in terms of norms; that is, minimize
[Az—yll*+ Al Pz||?, (2.1)

where P is any linear operator and y are the data. Writing this in terms of inner
products, we have

(Az—y, Az—y) + APz, Pz). (2.2)
This is equal to

APz, P2y + Az, Az) — (Az,y) — <y, Az) + <y, y). (2.3)

Since the last term is constant, it can be disregarded in the minimization. If the

adjoints of the operators P and A are denoted by P* and A4*, respectively,
minimizing this expression is equivalent to minimizing

Az, P*Pzy + {2z, A*Az) —2{z, A*y). (2.4)

Defining a new operator @ by @ = AP*P+ A*4, we can formulate the original
variational problem as the problem of minimizing

{z,Qz) —2{z, A*y). (2.5)
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The first term can be identified with the total power dissipated in a linear resistive
network, while the second term is the voltage- or current-source contribution. Note
that @ is automatically self-adjoint. I, and V, in (12) are through and across
variables, respectively, so that (12) can be put in the form of (2.5). Since @ is
hermitian it can always be diagonalized. Equation (2.5) is then equivalent to (12)
and our theorem is proved.

If @ is a linear positive definite and bounded operator, that is, it satisfies

mlz,z) < {z,Qz) < M<{z,2), (2.6)

for all ze H, with H being a Hilbert space, and some M,m > 0, the vector z
minimizing (2.5) is the unique solution of @z = b (thus the inner product <z, @z)
is H-elliptic and bounded, see Terzopoulos (1984)). The problem of minimizing the
quadratic functional on a Hilbert space can be formulated as a Hilbert space
minimum norm problem (Luenberger 1969).

APPENDIX 3

As shown in appendix 1, the content G of a network is stationary at the steady
state. In particular, the proof holds if some resistances are negative (see, for
instance, the proof based on Tellegen’s theorem by Oster & Desoer (1971)). For
linear constitutive relations (our case in this paper) the content is G = P/2, where
P is the total dissipation. A resistive network with constant sources is always in
thesteady state, sinceit hasnodynamicelements. Thus, the networks corresponding
to the regularization principles find the correct solution, provided the variational
principle (3) has a unique solution. A sufficient condition for the uniqueness of the
variational solution is that the matrix ¢ is positive definite (see (2.6)).

It is also important to ask whether in practice these networks are stable. Even
a purely resistive network will show some dynamics, because of small, unavoidable
capacitances. In general, the solution is stable if all of the eigenvalues of the matrix
@ are positive (see, for instance, Oster & Desoer 1971). An arbitrary resistive
network with negative and positive resistances may have one or more negative
eigenvalues and be therefore unstable. A network, however, representing a matrix
@ with the properties of (2.6) is always stable, because ) is positive definite and
has therefore only positive eigenvalues. In other words, conditions (easy to meet)
that ensure uniqueness of the variational solution also ensure stability of the
corresponding electrical network.
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