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TABLE 2 Probability of fecundity in macaques

Male reared Female reared
Mother's rank
Dominant 0.80(5) 0.92(14)
Subordinate 0.62(8) 0.00(4)

Probability of subordinate and dominant macaques giving birth the year
after rearing sons versus daughters. Number of births sampled are given
in parentheses. The generalized linear model for macaques only incorporated
the variables dominance, sex, and dominance-sex interaction (see Table 1).

quite different in ungulates and primates. In red deer, goats,
and bison, as well as in African elephants®'*'® sons are suckled
more frequently than are daughters during the peak period of
lactation and the energetic costs of rearing males probably
exceed those of rearing females’. Subordinate females could be
more strongly affected by these differences because they do not
have priority of access to the best feeding sites, and because
their body condition is generally poorer than that of dominant
females'®. By contrast, no overall differences in suckling were
found between male and female infants in rhesus macaques.
But, when the interaction between infant sex and maternal rank
was examined, it was found that daughters of subordinate
mothers tended to be suckled more frequently than their sons,
and more than the infants of dominant mothers’. Allowing
frequent access to the nipple could have been a maternal
response to the high levels of aggression and harassment that
the daughters of subordinate mothers tended to receive from
unrelated females, a phenomenon which has been documented
in several studies”'°. Frequent nipple stimulation inhibits ovula-
tion in mammals'’, and this could have been responsible for
the longer delays before the next conception among subordinate
females that had reared daughters™'®,

Consequently, the results presented here indicate that two
separate selection pressures can favour the evolution of the
contrasting sex-ratios in ungulates’'®-*' and cercopithecine
primates®™’. First, maternal rank can have opposite effects on
the relative fitness of sons and daughters!->¢7. Second, maternal
rank can modify the relative costs of rearing sons and daughters,
favouring the production of daughters by subordinate mothers
in red deer, and the production of sons by subordinate mothers
in macaques. In both cases, these biases could favour the
production of an excess of the other sex by dominant
females™. O
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A network that learns

to recognize
three-dimensional objects

T. Poggio & S. Edelman

Artificial Intelligence Laboratory, Center for Biological iInformation

Processing, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

THE visual recognition of three-dimensional (3-D) objects on the
basis of their shape poses at least two difficult problems. First,
there is the problem of variable illumination, which can be
addressed by working with relatively stable features such as
intensity edges rather than the raw intensity images"?. Second,
there is the problem of the initially unknown pose of the object
relative to the viewer. In one approach to this problem, a hypothesis
is first made about the viewpoint, then the appearance of a model
object from such a viewpoint is computed and compared with the
actual image®”. Such recognition schemes generally employ 3-D
models of objects, but the automatic learning of 3-D models is
itself a difficult problem®®. To address this problem in computa-
tional vision, we have developed a scheme, based on the theory of
approximation of multivariate functions, that learns from a small
set of perspective views a function mapping any viewpoint to a
standard view. A network equivalent to this scheme will thus
‘recognize’ the object on which it was trained from any viewpoint.

Is the need for 3-D range-based or manually specified models
real? Structure from motion theorems'®'', pioneered by Ull-
man'?, indicate that full information about the 3-D structure of
an object represented as a set of feature points (at least five to
eight) is present in just two of their perspective views, provided
that corresponding points are identified in each view. A view is
represented as a 2N vector Xx,, ¥, X2, ¥2,..., XN, Y~ Of the
coordinates on the image plane of N labelled and visible feature
points on the object. Here, and in most of the following, we
assume that all features are visible, as they are in wire-frame
objects. The generalization to opaque objects follows by par-
titioning the viewpoint space for each object into a set of
‘aspects’™?, corresponding to stable clusters of visible features.
In principle, therefore, having enough 2-D views of an object
is equivalent to having its 3-D structure specified.

This line of reasoning, together with properties of perspective
projection, indicate (1) that for each object there exists a smooth
function mapping any perspective view into a ‘standard’ view
of the object, and (2) that this multivariate function can be
synthesized, or at least approximated, from a small number of
views of the object. Such a function would be object-specific,
with different functions corresponding to different 3-D objects.
Furthermore, the application of the function that is specific for
one object to the views of a different object is expected to result
in a ‘wrong’ standard view that can be easily detected as such.

Synthesizing an approximation to a function from a small
number of sparse data—the views—can be considered as learn-
ing an input-output mapping from a set of examples**'’. A
powerful scheme for the approximation of smooth functions
has been recently proposed under the name of Generalized
Radial Basis Functions (GRBFs), and shown'*'> to be
equivalent to standard regularization'®'” and generalized splines
(ref. 14; see closely related work by Powell'®, and Broomhead
and Lowe'?). The approximation of f: R" > R is given by

f(x):2¢’f=l CaG(”x—ta”) (1)

where the K coefficients ¢, and the centres t, are found during
the learning stage and G is an appropriate basis function (see
refs 14 and 15), such as the gaussian function. A polynomial
term of the form X, d;p;(x) can be added to the right-hand side
of equation (1). In this paper we omit the polynomial term (see
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FIG. 1 a Network representation of approximation

by GRBFs. In a special simple case, there are as a
many basis functions (K) as views in the training
set (M; in general, K <M). The centres of the
radial functions are then fixed and are identical
with the training views. Each basis unit in the
‘hidden’ layer computes the distance of the new
view from its centre and applies to it the radial
function. The resulting value G(||x—t,||) can be
regarded as the ‘activity’ of the unit. If the function
G is gaussian, a basis unit will attain maximum
activity when the input exactly matches its centre. na
The output of the network is the linear superposi-
tion of the activities of all the basis units in the
network. b, An equivalent interpretation of a for
the case of gaussian radial basis functions. A
multidimensional gaussian function can be synthe-
sized as the product of 2-D gaussian receptive
fields operating on retinotopic maps of features. The solid circles in the
image plane represent the 2-D gaussian functions associated with the first
radial basis function, which corresponds to the first view of the object. The
dotted circles represent the 2-D receptive fields that synthesize the gaussian

Input

RBFs

ref. 14). If the function f is vector-valued, each component f;
is computed using equation (1) with the appropriate ¢, in
which case the equation is equivalent to the network of Fig. 1.

The weights ¢ are found during learning by minimizing a
measure of the error between the network’s prediction and the
desired output for each of the M examples. Computationally,
this amounts to inverting a matrix (when M # K, the generalized
inverse is computed instead). When the number of basis func-
tions is less than the number of views in the training set, the
centres of the basis functions are also updated during learning.
Updating the centres is equivalent to modifying the correspond-
ing ‘prototypical views’. For a detailed description of this
approximation technique, of its theoretical motivation and its
relation to other techniques such as backpropagation®, see refs
14 and 15.

Figure 2 shows an application of GRBFs to the recognition
problem. We consider here the special case of recognizing a
wire-frame 3-D object from any of its perspective views with N
feature points (we mainly used N = 6). A GRBF module, trained
on several tens of random views, maps any new view of the
same object into a standard view (for example, into one of the
initially chosen training views).

We have also explored the use of fewer basis functions than
training views and used gradient descent to look for the optimal
locations of the centres t, in addition to the optimal value of
¢,- We found satisfactory performance with just two basis units
(for 10-40 training views and with the attitude of the object
limited to one octant of the viewing sphere). This indicates that
a very small number of units are needed for each aspect' of
an opaque object (compare with ref. 21). It is of interest that
after training, the centres of the radial basis units correspond
to views that are different from any of the training views.

It should be clear that the scheme proposed here addresses

Products of
receptive fields

vt !
Output x1 Y, x y2 X%

radial function associated with another view. The gaussian receptive fields
transduce positions of features represented implicitly as activity in a
retinotopic array, and their product ‘computes’ the radial function without
the need of calculating norms and exponentials explicitly.

only one part of the problem of shape-based object recognition,
the variability of object appearance due to changing viewpoint.
The key issue of how to detect and identify image features that
are stable for different illuminations and viewpoints is outside
the scope of this paper. Notice that the GRBF approach to
recognition does not require the x, y coordinates of image
features as inputs: other parameters of appropriate features
could also be used, such as a corner angles (see Fig. 4a)
or segment lengths (compare ref. 4 and M. Villalba, thesis
in preparation), or the colour and the texture of the object.
Recognition of noisy and partially occluded objects, using
realistic feature identification schemes, requires an extension of
the scheme, even if the problems of object segmentation and
selection®” are addressed separately. A natural extension of the
scheme could be based, for example, on the use of multiple
lower-dimensional centres, corresponding to different subsets
of detected features, instead of one 2 N-dimensional centre for
each view in the example set. Our initial experiments*> support
the notion that a scheme based on low-dimensional centres is
useful for recognition while being robust against occlusions and
noise. Another possible extension of the scheme involves a
hierarchical composition of GRBF modules, in which the out-
puts of lower-level modules assigned to detect objects parts and
their relative disposition in space are combined to allow recogni-
tion of complex-structured objects.

In a sense, the application of the GRBF method to recognition
can be considered as a generalization of the exact approach of
Basri and Ullman®*. They have recently shown that under ortho-
graphic projection, any view of a 3-D object undergoing a linear
group of transformations that includes rigid transformation in
3-D space (that is, translations and rotations) can be obtained
from three fixed views. They used this result to synthesize a
linear operator that, for orthographic projection, maps exactly

FIG. 2 Application of a general module for multi- o RBF module RBF module

variate function approximation to the problem of @ Training views for object 0y Standard view b for object Oy

recognizing a 3-D object from any of its perspec- Xy, — —A New view 1 — F— X, standard view
tive views. a, Module is trained to produce the %%, T —— x¥, of 0, X%T— — xy, of O
vector representing the standard view of the )67 \P/ : . .

object, given a set of examples of random perspec- . *)l »7

tive views of the same object. The module is also View 1. view M = x, ¥, —

capable of recovering the viewpoint coordinates —e } Poses of the —e }Recm'ed
6, ¢ (the latitude and the longitude of the camera @ J aining views I pose

on an imaginary sphere centred at the object) that correspond to the training
views. When given a new random view of the same abject (b), the module
recognizes it by producing the standard view. Other objects are rejected by
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thresholding the euclidean distance between the actual output of the model
and the standard view (this step corresponds to the action of a single radial
function with a sharp cut-off centred on the standard view).
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FIG. 3 Some examples of the module’s operation.
Standard view of a wire-frame object (top row) 7
superimposed on its estimate by the GRBF network

(large dots) when its input is a random view of

the same object (second row from top). The fit is

much closer than in the bottom two rows, where

the input view belongs to a different object. The ‘(?
number of training views M is 40, the number of

RBFs K is 20, and the range of attitudes 6, ¢ is

0°-90°. Gradient descent was used to obtain the A?
optimal positions of the GRBF centres. Within a

smaller range of 6, ¢ €[0°, 45°], the performance

was acceptable with only two radial basis units

(M=40, K=2). El
each view of a given object into the zero vector and performs
fairly well also for most cases of perspective projection®. By
comparison, the GRBF approach is based on an approximation,
even in the orthographic case, and typically needs more than
three views. But it can (1) use as inputs feature parameters other
than the x, y coordinates (Fig. 4a) and (2) recover parameters,
such as the attitude angles of the input object (Fig. 4d), that
do not depend linearly on the views of the object.

In some respects, the performance of the GRBF-based recog-
nition scheme resembles human performance in a related task.
For example, the number of training views necessary to achieve
an acceptable recognition rate on novel views, 80-100 for the
full viewing sphere, is broadly compatible with the finding®’
that people have trouble recognizing a novel wire-frame object
previously seen from one viewpoint if it is rotated away from
that viewpoint by about 30° (it takes 72 30°x 30°-patches to
cover the viewing sphere). Furthermore, a network model
recently shown to capture some of the time-course and learning
characteristics of the recognition process®®, seems to be compu-
tationally related to GRBFs”’. Experiments designed to test
specific predictions of GRBF and several other recognition
schemes®*?” are now under way in our laboratory.

One feature of the GRBF scheme that could guide its interpre-

g% A
S A

& ® %
tation in biological terms is the possibility of decomposing a
multidimensional gaussian radial basis function into a product
of gaussian functions of lower dimensions (Fig. 1b). In our case,
the centre of a basis unit is similar to a prototype and the unit
itself is synthesized as the product of feature detectors with 2-D
gaussian receptive fields (that is, the activity of a detector
depends on the distance r between the stimulus and the centre
of the receptive field as e”"/”’). The network’s output (see
equation 1) is the sum of products and therefore represents the
logical disjunction of conjunctions ‘v, a; (feature F;, at
(x;, ¥:))’, where the disjunction ranges over all the protypes of
the given object.

The adjustment of weights ¢, in the GRBF network in Fig.
1 through some pseudo-hebbian mechanism is not biologically
implausible. Alternatively, a plausible biophysical implementa-
tion of the gradient-descent update of the centres (or, as in Fig.
1b, the location of the receptive fields) is problematic. But notice
that reasonable initial performance can be obtained merely by
setting the centres to a subset of the examples. A subsequent
possibly slow process, much simpler and more plausible than
gradient descent, may then search for optimal positions. Another

possible solution is to select for each object a set of optimally
located receptive fields out of a large available population® ",

FIG. 4 a Performance of a GRBF module trained
to recognize a specific object over the full range
of 6, ¢ (the entire viewing sphere). Views were
encoded as vectors of 2N vertex coordinates (solid
curve; error bars show the s.d. of the performance
indices, computed over a set of 10 objects, each
of which served in turn as the target) or as vectors

a

MN /MAX performance
e s
—
]

MIN /MAX performance

of N—2 angles formed by pairs of segments
(dashed curve). In these examples, the number of
training views M is chosen to equal the number

S0 100 150 200
Camera distance

of radial basis functions K. The performance index
MIN/MAX is defined as the ratio of the smallest
euclidean distance E obtained for views of
different objects to the largest £ obtained over a
set of novel random views of the object on which
the module has been trained. MIN/MAX>1 is

8,p rms error

MIN /MAX performance

required for a perfect separation between the
target and other objects using a simple threshold
decision. For nearly perfect recognition, 80-100
views suffice. b, Performance for two conditions—near and far—
corresponding to relatively high and low perspective distortion, respectively
(full range of 6, ¢ in both cases). ¢, GRBF shows a slow degradation in
performance with increasing range of the viewpoint coordinates 6, ¢ (the
objects are a cube and an octahedron, M=K =40, and the error bars are
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Range of ¢ (degrees) Range of ¢ (degrees)

s.d. over 10 sets of random training and testing views). d, GRBF can also
provide a good estimate of the attitude of the object. The inset shows the
errors in the viewpoint coordinates 6, ¢ recovered by the module versus

the range of the viewpoint coordinates. In ¢ and d @ =20max, SO that
0,max = 180° corresponds to the full viewing sphere.
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Sensory-input driven selection of representation units has been
demonstrated in vivo (for example, see refs 28 dnd 29).

The GRBF recognition scheme seems reasonable in terms of
the biophysical mechanisms required, is attractive because an
effective computation is simply performed by the combination
of receptive fields, and is surprising because it bases a scheme
involving units somewhat similar to ‘grandmother’ cells (com-
pare refs 30 and 31) on the rigorous approximation methods of
regularization and splines. O
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A second molecular form of D,
dopamine receptor in rat and
bovine caudate nucleus

Christopher L. Chio*, Gerard F. HessT,
R. Scott Grahami & Rita M. Huff*

* Cell Biology and T Molécular Biology, The Upjohn Co., Kalamazoo,
Michigan 49001, USA

OVEREXPRESSION of the D, dopamine receptor has been pro-
posed to be part of the pathology of schizophrenia'. The isolation
of a D, dopamine receptor clone has assisted the molecunlar charac-
terization of D, receptors®. We have now isolated an identical rat
clone along with two other clones—a second related rat clone
(RD-2;,)) and a homologous bovine clone (BD-2,,), both of which
contain an insert encoding an additional 29 amino acids relative
to the original rat clone (RD-2.). All three clones encode D,
receptor binding sites when expressed in COS-7 cells. The amino-
acid insert encoded by D-2;, lies in the domain of the receptor
believed to interact with the GTP-binding proteins (G proteins) of
various signal transduction pathways’. By using oligonucleotide
probes specific for either D-2, or D-2;, RNA transcripts, we have
found that the level of expression of the D-2,,-encoded form of
the receptor is seven times that of the D-2, form in the caudate
nucleus, the richest brain source of D, receptors®.

We have isolated a clone, RD-2,, that was shown by sequenc-
ing to be identical (between the Xhol and Pstl sites) to the rat
D, clone of Bunzow et al®> We labelled RD-2, complementary
DNA with random primer and used it as a hybridization probe
to screen a bovine caudate nucleus cDNA library. We identified
and isolated a single positive plaque, and found the cloned
DNA fragment to comprise 2,376 bases. The DNA sequence
and the amino-acid sequence of the longest open reading frame
are shown in Fig. 1. Alignment of the bovine clone with RD-2,
showed that the two clones are highly homologous, except that
the bovine clone contains an insert of 87 nucleotides that is not
found in RD-2,. Thus, the bovine clone encodes a protein of
444 amino acids compared with the 415 amino acids encoded
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by RD-2,. Excluding the insert, the clones from the two species
are 85% identical at the nucleotide sequence level and 96%
identical at the amino-acid sequence level, with the few amino-
acid differences being conservative changes.

Further screening of the original rat brain cDNA library
revealed that of 16 positive clones, 4 had cloned DNA fragments
of ~1,450 bases (one of these is RD-2,), and 12 had cloned
DNA fragments of ~1,550 bases. DNA from a clone of ~1,550
bases, clone RD-2,,, was sequenced and found to be identical
to RD-2,, including the noncoding sequence between the Xhol
and Pst1 sites, except for an additional 87 nucleotides inserted
between nucleotides 723 and 724 of RD-2,. The additional
sequence in RD-2;, is inserted at the same location and is highly
similar (97%) to the bovine insert sequence.

D, dopamine receptors belong to a family of receptors whose
members have in common an interaction with one of the G
proteins for signal transduction. All family members sequenced
so far have structural similarities, including seven putative trans-
membrane domains and a putative G protein-coupling domain
in the third intracytoplasmic loop’. It is in the putative third
intracytoplasmic loop of the D, dopamine receptor that the
additional coding sequences of RD-2;, and BD-2;, are found.
The amino-acid sequences encoded by the two rat clones and
the bovine clone flanking and including the insert region are
shown in alignment in Fig.2. The amino-acid sequence
encoded by the insert in RD-2,, is identical to that encoded by
the insert in BD-2;,, except for a single methionine-to-valine
substitution.

We transfected all three clones into African green monkey
kidney cells (COS-7) and measured D, binding sites using the
D, dopamine receptor antagonist [*H]spiroperidol. We detected
high and equivalent levels of D, receptors in homogenates of
COS-7 cells transfected with each clone (Fig. 3). Furthermore,
the newly expressed receptors had similarly high affinities for
[*H]spiroperidol (Ky=18 pM (RD-2,); K;=22pM (RD-2;,);
K,=24pM (BD-2,,); K, dissociation constant)—the same as
the affinity of the D, receptor in the caudate nucleus for
spiroperidol and 1,000 times the affinity of the D, dopamine
receptor for spiroperidol®. The affinities of RD-2,- , RD-2,,- and
BD-2;,-encoded receptors for dopamine in membranes prepared
from transfected cells were also nearly identical, at ~1-2 uM.
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