CVGIP: IMAGE UNDERSTANDING
Vol. 56, No. 1, July, pp. 22-30, 1992

Learning of Visual Modules from Examples: A Framework for
Understanding Adaptive Visual Performance

TomMAso PoGGIo

Center for Biological Information Processing, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

SHIMON EDELMAN*

Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel

AND

MANFRED FAHLE

Department of Neuroophthalmology, University Eye Clinic, D7400, Tiibingen, Germany

Received September 24, 1991; accepted March 18, 1992

Networks that solve specific visual tasks, such as the evaluation
of spatial relations with hyperacuity precision, can be easily syn-
thesized from a small set of examples. The present paper describes
a series of simulated psychophysical experiments that replicate
human performance in hyperacuity tasks. The experiments were
conducted with a detailed computational model of perceptual
learning, based on HyperBF interpolation. The success of the
simulations provides a new angle on the purposive aspect of hu-
man vision, in which the capability for solving any given task
emerges only if the need for it is dictated by the environment. We
conjecture that almost any tractable psychophysical task can be
performed better after suitable training, provided the necessary

information is available in the stimulus. © 1992 Academic Press, Inc.

1. A GENERAL FRAMEWORK FOR

PSYCHOPHYSICAL MODELING

The human visual system excels not only in the diffi-
cult tasks it faces routinely, such as recognition and navi-
gation, but also in other, rather esoteric and no less diffi-
cult tasks, whose counterpart in the natural environment
is not readily apparent. Figure 1 illustrates several such
tasks that test different kinds of visual acuity. In all these
' tasks the visual system exhibits a hyperacuity-level per-
formance (that is, the effective resolution it achieves is
better than the best possible two-point acuity, dictated by
~ the spacing of the photoreceptors in the fovea, the most
densely sampled region in the visual field).

The impressive performance of the human visual sys-
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tem in the hyperacuity tasks indicates that the informa-
tion necessary for solving each of these tasks is present in
the stimulus and in principle can be recovered through
appropriate processing [5]. The easiest approach to the
computational modeling of hyperacuity processing, and
of any other visual competence, is to conjecture a spe-
cific algorithm and a corresponding neural circuitry for
each given task. This approach, if taken seriously,
quickly leads to the absurd conclusion that the visual
system had a hardwired mechanism ready to process any
stimulus configuration the psychophysicists came up
with in the last hundred years.

A more plausible alternative to the task-specific expla-
nation postulates a common mechanism underlying the
ability of the visual system to solve the different tasks.
The possibility that such a mechanism exists has been
mentioned in the last decade by several researchers.
Consider again the example of acuity tasks, which we
adopt as a test case throughout this paper. It has been
shown that, in principle, spatial mechanisms that account
for grating resolution can support hyperacuity-level per-
formance [13, 4, 27]. Furthermore, some of the hyper-
acuity tasks can be solved by detecting ‘“‘secondary’’
cues such as luminance difference (as in the bisection
task) or orientation (as in the detection of vernier stim-
uli).

The accounts offered in the past for hyperacuity per-
formance suffer, however, from two limitations. First,
the detailed structure of the neural circuitry postulated
by the models tends to be problematic. In particular, the
idea of fine-grid reconstruction of the image in some layer
of the cortex [1, 5] is unsatisfactory, because it still re-
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FIG. 1. Ilustration of five of the many different tasks in which
human subjects perform at hyperacuity levels, that is, exhibit resolution
finer than the spacing between individual photoreceptors.

quires a homunculus looking at the reconstructed image
and applying a different routine for each specific hyper-
acuity task. Second, it is not clear how the computational
mechanisms mentioned in the models (e.g., metric com-
putations in the space of receptive field activities [27])
can be integrated into a more general theory of brain
function.

The present paper outlines an account of visual perfor-
mance that is both biologically plausible and sufficiently
general to encompass a variety of stimuli and tasks. We
propose [16] that the brain may be able to synthesize,
possibly in the cortex, appropriate modules for specific
tasks after a quick training phase in which it is exposed to
examples of the task. In most psychophysical experi-
ments, subjects are actually shown several examples of
the task before testing takes place. Hyperacuity tests, in
particular, require a significant training period in order to
achieve good performance (thresholds typically decrease
by a factor of 2 to 4 during the first several hundred
stimulus presentations [25]; on the other hand, some sub-
jects have thresholds of 10" or less upon the first testing).
A broad prediction of our conjecture is that almost any
psychophysical task that is initially tractable can be per-
formed better after suitable training, provided that the
necessary information is available in the stimulus. Com-
putational support for this conjecture, outlined below, as
well as the results of recent psychophysical experiments
[8], supplies new evidence regarding the purposive as-
pect of human vision, in which the capability for solving

any given task emerges only if the need for it is dictated
by the environment.

Synthesizing a module for a specific task from sample
input/output pairs may be often regarded as approximat-
ing a multivariate function from sparse data. An efficient
scheme for the approximation of smooth functions was
proposed recently under the name of HyperBF networks
[19]. Detailed descriptions of this scheme, its theoretical
underpinnings, and its performance can be found in {19,
16, 18, 2]. Within the HyperBF scheme, a multivariate
function is expanded in terms of basis functions, with
parameter values that are found or ‘‘learned” from the
data, i.e., the examples. The expansion has the form

n
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where the parameters t, that correspond to the centers of
basis functions, and the coefficients ¢, are unknown, and
are in general much fewer than the data points (n = N).
The norm ||-|| is a weighted norm

Ix = tJfy = (x = tL)TWIW(x — t,), @)

where W is an unknown square matrix and the super-
script T indicates the transpose. In the simple case of
diagonal W the diagonal elements w; assign a specific
weight to each input coordinate, determining in fact the
units of measure and the importance of each feature [19].
Equation (1) can be implemented by the network of Fig.
2. The parameters ¢, t, and W are searched for during
learning by minimizing the error functional, defined as

N
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Iterative methods of the gradient descent type can be
used for the minimization of H. An even simpler method
that does not require calculation of derivatives looks for
random changes (controlled in appropriate ways) in the
parameter values that reduce the error (cf. [14, 2]). The
interpretation of the network of Fig. 2 is as follows. The
centers of the basis functions, which are points in the
multidimensional input space, may be considered as pro-
totypical inputs for which the desired response is known.
Each unit computes a (weighted) distance of the inputs
from its center and applies to it the radial function. In the
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FIG. 2. (a) A network representation of approximation by Hyper Basis Functions. (b) shows an equivalent interpretation of (a) for the case of
Gaussian radial basis functions. Gaussian functions can be synthesized as the product of two-dimensional Gaussian receptive fields operating on
retinotopic maps of features. The solid circles in the image plane represent the 2D Gaussians associated with the first radial basis function, which
represents the first input pattern. The dashed circles represent the 2D receptive fields that synthesize the Gaussian radial function associated with
another input pattern. The Gaussian receptive fields transduce positions of features, represented implicitly as activity in a retinotopic array, and
their product “‘computes’ the radial function without the need of calculating norms and exponentials explicitly.

case of the Gaussian basis function, a unit will be the
most active when the input exactly matches its center.
The output of the network is a linear superposition of the
activities of all the basis functions, plus direct, weighted
connections from the inputs (the linear terms of p(x)) and
from a constant input (the constant term). Note that in

FIG. 3. An illustration of the vernier acuity task: the subject has to
tell whether the upper bar is to the left or to the right of the lower one.
Human subjects (and the HyperBF simulation) perform this task at
hyperacuity levels; that is, the minimum discernible horizontal dis-
placement of the two bars is much smaller than the average distance
between adjacent photoreceptors. The photoreceptor mosaic is shown
superimposed on the stimulus. Each cone is shown as a circle that
represents the Gaussian spread of a point source shining at the corre-
sponding retinal location. This spread is due to the low-pass character-
istics of the optics of the eye. Our simulation does not require position-
ing the “‘receptors’ at precisely defined locations.

the limit case when the bases are delta functions, the
system becomes equivalent to a look-up table holding the
examples.

2. EXAMPLE: SIMULATED EXPERIMENTS
IN HYPERACUITY

In the preceding section we proposed a new general

~ approach to the modeling of perceptual function, whose

central tenet is that the perceiver learns to solve the task
at hand in a demand-driven fashion. According to the
proposed approach, cortical modules that perform learn-
ing from examples rely on a computational process that
may be regarded as multivariate function approximation
from sparse data. The present section provides a rather
detailed example of an application of this approach to the
class of spatial discrimination tasks illustrated in Fig. 1.
Accounts of application of multivariate function approxi-
mation to a wide variety of learning tasks, ranging from
object recognition to robot control, may be found else-
where [17, 20]. We proceed to describe a series of simu-
lated psychophysical experiments, in which a simple ver-
sion of a HyperBF module has been trained to perform
several different hyperacuity tasks.

2.1.  Simulation Details

The input to the module was an array of *‘photorecep-
tors”” whose activity corresponded to the input image.
blurred by the eye’s optics.! There were eight receptors,
positioned randomly on a loose 4 X 2 grid (see Fig. 3).

I The identification of the input units with photoreceptors is done
here for simplicity of exposition and does not imply an attempt to model
the neurophysiological aspects of hyperacuity perception.
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FIG. 4. The relationship between the performance index used in the
simulations—the absolute output error of the HyperBF module—and
the acuity threshold. The probability density of the output is shown as a
distribution centered at some r > 0, whose tail extends across 0 to the
other half of the +1 range of possible values. The area A under the tail
of the distribution indicates the probability of erroneous response, given
the statistics represented by the mean and standard deviation of error
(the two parameters measured in the simulations). The acuity threshold,
in turn, can be related to the probability of erroneous response through
probit analysis.

Each of the receptors calculated its response by integrat-
ing the input over a Gaussian-shaped region of the ‘‘ret-
ina,”” with two space dimensions (o = 30") and one time
dimension (o0 = 0.5 units). The space dimensions of the

Mean Error
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FIG. 5. Mean error of the synthesized module vs. X-offset of the

vernier stimulus. The module was trained to output +1 for left offset
and —1 for right offset. Consequently, error of 0.1 corresponds to high
performance (bars in this and other figures denote *+1 standard error of
the mean). The values of X-offset along the abscissa are the lower
bounds of an octave range (e.g., 4 pixels means that the offsets were
uniformly distributed between 4 and 8 pixels; in all our simulations the
scale was 20 pixels to 30"). The three curves correspond to three train-
ing/testing combinations. In the first one (¢), the same X-offset range
was used both for training and testing. In the other two combinations
({ and 1), the testing range was one-half and twice as large as the
training range, respectively. Note that the smallest X-offset that still
yielded high performance (mean error smaller than 0.05) is much
smaller than the photoreceptor spacing (6", compared to about 30").

“retina’’ were 180" x 360", while the time dimension had
an extent of =1 unit. The 8-component vector of receptor
outputs constituted the input to the HyperBF module,
which was trained to produce an output of +1 for one
sense of the input vernier displacement, and —1 for the
other.

The performance of the module was estimated by mea-
suring the absolute error, that is, the difference between
the actual output (which could be any number between
—1 and +1; for a proof see [6]) and the desired output
(=1; see Fig. 4). Without going into the details, we point
out that the absolute output error is a good analog of the
acuity threshold, since the two are related monotoni-
cally.

2.2. Replicating the Basic Psychophysics of
Vernier Discrimination

The HyperBF module coupled to the input mechanism
described above successfully replicated, after a training
phase typically consisting of about 50 examples, the fol-
lowing four basic findings of the psychophysics of hy-
peracuity in human subjects:

« The equivalent acuity threshold was significantly
lower than the spacing of the receptors in the simulated
retina ([9, 23]; Fig. 5).

« The threshold improved with increasing vertical sep-
aration of the two segments composing the vernier stimu-
lus ([25]; Fig. 6). We note that in human subjects this
improvement reverts with further increase in the vertical
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FIG. 6. Mean error of the synthesized module vs. Y-offset of the
vernier stimulus, by X-offset. The four curves correspond to four
ranges of X-offset (1-2, 4-8, 7-14, 10-20 pixels, corresponding to 1.5"—
3" 6"-12", 10.5"=21", and 15"-30"). Once the X-offset is high enough to
guarantee good performance (curves 2, 3, and 4), increasing the Y-
offset improves the performance level, as it does in human subjects.
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FIG. 7. Mean error of the synthesized module vs. orientation of the
stimulus (shown along the abscissa as the lower bound of a l-octave
range, in degrees), by stimulus length. X-offset was between 4 and 8
pixels (6" to 12), Y-offset was 1 pixel (1 .5"). The four curves correspond
to four values of stimulus length, from 10 to 40 pixels (15" to 60"). In
general, performance is seen to deteriorate with increased orientation
range.

separation; this phenomenon was also replicated by the
model.

« The threshold deteriorated with increasing orienta-
tion difference between training and testing trials. This
deterioration was more pronounced for shorter stimuli
([22]; Fig. 7).

« Performance remained at hyperacuity levels when
the stimuli moved across the retina, and was the highest
when the velocity of the stimulus translation was the
same during training and testing ([24]; Fig. 8).

Importantly, the hyperacuity-level performance was
independent of the precise location of the receptors. At
the same time, different quasi-random receptor mosaics
yielded thresholds that sometimes varied by as much as a
factor of 2. A similar range of hyperacuity thresholds is
observed in human subjects with full acuity and perfectly
normal eyes.

2.3. Comparison among Different Perceptual Tasks

The next experiment compared the performance of the
HyperBF module in two tasks: line vernier and three-
point bisection. The stimulus in the bisection task con-
sisted of three dots, arranged in a vertical line, at an
approximately even spacing. The task is to determine
whether the middle dot is above or below the midpoint of
the segment formed by the other two dots. The HyperBF
module learned this hyperacuity task as easily as it did in
the line vernier case.

Another experiment made a comparison between the
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line vernier task and a similar one in which each of the
line segments has been replaced by two dots (situated at
its endpoints). The network learned this task, as it did
previously in the line vernier and the bisection cases. The
comparison between the two vernier tasks appears in
Fig. 9. The better performance of the HyperBF module in
the dot vernier task for small X-offsets parallels a recent
surprising finding with human subjects (M. Fahle, per-
sonal communication).

2.4. Replication of the Decrease of Vernier Threshold
with Practice

A major characteristic of human performance in hy-
peracuity tasks is the gradual and constant improvement
of the threshold, which continues, albeit at a slow rate,
after 10,000 trials ([8]; see the Appendix). We have repli-
cated this phenomenon by endowing the model with a
dual incremental learning mechanism (see also [3)). First,
when the model’s performance on a new input was mark-
edly inadequate (in comparison with recent history), that
input was adjoined to the model as an additional center
(prototype). This happened mainly in the initial trials,
with the number of centers eventually reaching an
asymptote that depended on the nature of the task and on
the parameters that affected the decision to add new cen-
ters. The performance of the model during these first
trials improved quickly, then stabilized as the number of
centers asymptoted. Second, further gradual improve-
ment in the performance was obtained by letting the
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FIG. 8 Mean error of the synthesized module vs. velocity of the
stimulus during testing. X-offset was between 4 and 8 pixels (6" to 12),
Y-offset was 1 pixel (1.5"). The four curves correspond to four values of
velocity during training (same set of 4 values as the testing velocities—
0, 1, 2, and 4 pixels/frame, corresponding to 0, 1.5, 3, and 6"/frame). In
general, performance deteriorates with increased testing velocity, but
to a lesser extent if the training velocity was relatively high as well.
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FIG. 9. Mean error of the synthesized module vs. X-offset of the vernier stimulus, by Y-offset. Left: line vernier stimulus. Right: dot vernier

stimulus. Note better performance in the latter case for small X-offsets.

model carry out a local random search in the space of
existing HyperBF center coordinates. This search was
guided by feedback given to the model (that is, by indicat-
ing whether the response at each trial was correct). In the
Appendix we discuss how the incremental learning algo-
rithm can be naturally extended to work even without
explicit feedback, in certain tasks.

The algorithm for adjusting the positions of the existing
centers was as follows. For each new input, the system
made between 10 and 100 random changes in the value of
a randomly chosen coordinate of a center (the amplitude
of the change was about 10% of coordinate value). After
each change the error for that particular input was recal-
culated. If the new error was lower (and, with a small
probability, if the error increased), the change was incor-
porated into the system, otherwise the change was re-

Error
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FIG. 10. A plot of the output error of the HyperBF module vs. trial
number, demonstrating the improvement in vernier acuity over 150
trials by the incremental learning technique described in section 2.4.
The number of HyperBF centers in this particular example reached 4 by
the 20th trial and remained constant after that. The best linear fit to the
data set for the first 20 trials has a slope of —0.020. The slope for the
entire 150 trials is —0.001. This illustrates the two learning phases,
transient and steady, exhibited by the HyperBF module. The improve-
ment in the performance obtained with human subjects in real psy-
chophysical experiments is also relatively fast in the initial trials and
slow but steady thereafter.

versed (cf. [2]).2 If at any stage during the simulated ex-
periment the current input was too distant from any of
the existing HyperBF centers, that input was adjoined to
the model as a new center (cf. learning by example acqui-
sition in the CLF model of object recognition [7]; see also
[18]). The time course of the performance of the resulting
algorithm that combined adjustment of existing centers
with recruitment of new centers is shown in Fig. 10.

The number of centers eventually incorporated into the
HyperBF module varied with the parameter that gov-
erned the acquisition of new centers. The smallest num-
ber of centers that resulted in adequate performance was
four. The nature of the representation of the input space
by the centers in that case is illustrated in Fig. 11, which
shows the response of each center unit to vernier stimuli
centered on the retina and having an X-offset ranging
from —20 to +20 pixels.> Of the four centers, one re-
sponded strongly to positive offsets and weakly to nega-
tive ones, another one preferred negative offsets, and the
other two had no clear preference for any offset sign.
Clearly, an appropriate response representing the sign of
the offset may be formed at the output level of the
HyperBF module, using the responses of the sign-selec-
tive centers.

3. CONCLUSIONS

3.1. Implications for the Psychophysics of
Visual Acuity

The skeleton model described in the preceding sections
is specific enough to be put to a psychophysical test. One

2 The probability of keeping a change that led to a higher error could
be decreased with time, as in the simulated annealing approach to opti-
mization [12]. This feature, however, appeared to be unnecessary for
our purposes.

3 By analogy to single-cell electrophysiology this illustration may be
regarded as a recording of the ‘‘receptive fields’ of the centers in the
space of possible inputs.
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possible way to do so is to test the prediction of the
model regarding generalization of performance from a
well-practiced to an unfamiliar range of inputs. Consider,
for concreteness’ sake, the vernier acuity task. If the
human visual system relies on a memory-based mecha-
nism such as HyperBF interpolation to solve this prob-
lem, a drop in performance (that is, an increase in the
error rate) is expected when the range of the stimuli is
suddenly changed (e.g., if the verniers are made smaller
by a factor of 2 or more in comparison with their values
during training). If regression analysis is used to obtain
an estimate of the psychometric function from error
rates, such a change in the stimulus range would cause a
decrease in the coefficient of determination of the regres-
sion, or in related measures of the goodness of fit. Fur-
thermore, the subsequent recovery of performance
should be slower if no feedback is provided after the
change (even though some learning appears to be possi-
ble even without explicit feedback; see the appendix). A
similar prediction of poor transfer between conditions
holds for a change to a different hyperacuity task (say,
from the top left stimulus in Fig. 1 to the bottom right
one). There are preliminary indications that all these phe-
nomena indeed happen in practice [8].

No problems should be encountered in the transfer of
performance to a different range of stimuli if the visual
system has a built-in scale invariance mechanism. Sev-
eral versions of scale-invariant models of early visual
processing have been offered in the past (e.g., [21]). For
our purpose, a simple scheme, in which invariance is
achieved through simultaneous processing of the input at
several levels of resolution (corresponding to several
overlapping grids of ‘‘ganglion’” cells of different size and
spacing), would suffice. In such a case, the system could
be prepared in advance, say, to a reduction in the input
scale (up to a certain limit), simply because the small-
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FIG. 11. Responses of the four centers acquired during an incre-
mental learning session that consisted of 150 trials vs. the offset of a test
vernier presented at a fixed location (see text for interpretation). During
learning, the offsets were uniformly distributed between 4 and 12 pixels.

\
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FIG. 12. Scale invariance in hyperacuity tasks can be achieved in
principle through simultaneous processing of the input at several levels
of resolution, corresponding to several overlapping grids of “‘ganglion”
cells of different size and spacing.

scale grid would exhibit, after the reduction, a pattern of
activity isomorphic to the pattern evoked by the large-
scale input in the large-scale grid (see Fig. 12).

In general, we expect that the cortex performs suitable
preprocessing to provide approximate invariance to cer-
tain basic transformations, without the need for explicit
learning. Translation, in addition to scale, is another ob-
vious candidate transformation for which invariance
could be built in. The bare version of our network, de-
scribed here, would not generalize from one patch of the
retina to another (though this may not be fully necessary;
cf. [15, 11]). It seems likely that translation invariance, at
least up to a certain extent, should be provided by mecha-
nisms preceding the learning stage. It is possible that
preprocessing mechanisms could also provide invariance
to the specific stimulus type by computing the equivalent
of “‘place tokens.”” This would enable the system to gen-
eralize automatically (without the need for examples)
from, say, line stimuli to, say, dot stimuli. In any case,
the input to a learning model such as the one we have
outlined should not be raw photoreceptor activities, as in
our simulations, but rather preprocessed photoreceptor
activities (for instance, the activities of cells with circu-
larly symmetric receptive fields, such as those found in
the cortical layer 4CB, or the activities of orientation-
selective cells, or a mixture of both). The type of prepro-
cessing in human vision and the associated pseudoin-
variances that it may support are experimental issues of
great interest. Of course, any lack of transfer of learning
would support the simple model. Experimental demon-
stration of transfer of learning with respect to translation
and scale, would not represent in our view a major prob-
lem for the model, though it would require a more com-
plex preprocessing than the one we have simulated.
Transfer of learning from one type of stimulus to another
(see Fig. 1) would be a more serious blow to the spirit of
our model and therefore a more critical test of its validity.
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3.2. Implications for the Modeling of Visual
Performance in General

In view of the results reported above, we conjecture
that the modules responsible for hyperacuity-level per-
formance are synthesized in a demand-driven fashion,
when the appropriate task is first performed by the sub-
ject. More generally, one may apply the same line of
reasoning to visual tasks other than hyperacuity, and
even to faculties other than vision. Indeed, HyperBF in-
terpolation and related approaches have been recently
applied with success to the modeling of human perfor-
mance in such diverse tasks as three-dimensional object
recognition [17, 6, 7] and motor control [20]. Importantly,
learning HyperBF interpolation can be implemented in a
simple biologically plausible network [19]. It remains to
be seen whether the above framework would prove use-
ful in unifying the existing diverse theoretical approaches
to the modeling of visual perception, and of brain func-
tion in general.

APPENDIX: LEARNING MODES OF THE
HyperBF SCHEME

Incremental Learning and Bootstrapping in the
Absence of Feedback

The HyperBF module must be allowed to improve its
performance throughout the testing stage, with or with-
out feedback. This can be achieved by using the algo-
rithm we described in the body of the paper, namely,
adding centers when the model’s performance is inade-
quate. Coefficients can be modified and (possibly on a
slower time scale) centers can be moved to decrease the
discrepancy between the desired value of the response
and the correct one. If no feedback is available, it is still
possible to estimate performance to provide guidance for
learning. Such an estimate can be formed if the new input
is not too far away from the existing centers, so that it is
likely that the network would classify it correctly (a
priori, the reliability of this classification is unknown,
however). Imagine that a few examples of the hyper-
acuity task are given with feedback, that is, accompanied
by the correct classification. Subsequently, new stimuli
are given without feedback. If these stimuli are suffi-
ciently similar to the original examples, and are classified
correctly, they can be incorporated into the network as
new centers (i.e., templates), effectively bootstrapping
the learning process. Thus, a small modification of the
scheme can make it work in the absence of feedback,
under certain conditions.*

Notice that such incremental learning tasks are not un-

¢ The human subjects, of course, have prior exposure (with feedback)
to an extremely wide variety of stimuli, through everyday visual experi-
ence.

common in psychophysics. In particular, hyperacuity is
often tested while adapting the size of the offset to the
subject’s performance, by slowly decreasing the offsets
during testing. Under these conditions, the offset in each
trial is never less than half the offset of the previous trial.
According to our simulations, the network described ear-
lier can generalize rather well to offsets of half the size
(but not to offsets of, say, four times the training size).
The incremental learning algorithm described in the main
text may be extended as follows. At first, in the absence
of feedback the network may attempt to classify a new
stimulus, provided that the potential classification would
be sufficiently reliable (that is, provided there is at least
one unit in the network which is sufficiently active, indi-
cating that the new stimulus is close to one of the existing
centers). Subsequently, the newly classified stimulus
may be designated as an example for incremental learn-
ing, increasing the portion of the input space for which
information is available.

Learning Algorithms: Details

The basic mechanism of learning in HyperBF networks
is the computation of the optimal set of coefficients ¢,
which relate the network’s output vector to the vector
whose components are the activities of the individual ba-
sis function units. Finding the matrix of coefficients
amounts to the solution of a linear system, provided that
the number of input/output examples is the same as the
number of basis functions. If there are more examples
than basis functions, the resulting overconstrained sys-
tem can be solved by pseudoinverse methods. A one-shot
method of this type does not appear to be biologically
plausible. However, an equivalent result may be
achieved, for the case of ¢,, by gradient descent that can
be implemented through a Hebbian mechanism (see [18]).

In the overconstrained case, repositioning the
HyperBF centers t, through gradient descent can also
improve the module’s performance (see also Section 2.4).
To cite a typical concrete example, we have trained a 20-
center network with 50 vernier examples, achieving
mean error of 0.67 += 0.07. After 20 steps of gradient
descent, the error dropped to 0.045 = 0.006.

In a more realistic situation, the HyperBF module is
allowed to improve its performance not only during spe-
cially designated training trials, but also throughout the
testing stage as in our incremental learning algorithm de-
scribed in the main text. In our simulation incremental
learning was based on a random search method described
in Section 2.4. Another possibility is to augment the
HyperBF module with a Widrow—Hoff learning mecha-
nism (see [26]), in which the coefficients ¢ are modified
according to the formula

Act+l = ,yct(ft _ i‘t)ht’
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where f' and f are the correct and the estimated output
values at trial 7, and h’ is the vector of intermediate-layer
values (which are the activities of the basis units). In
other words, the coefficients ¢ are modified by an
amount proportional to the error made in the current
trial. It has been shown [26, 10] that the Widrow—-Hoff
mechanism is equivalent to an incremental computation
of the appropriate pseudoinverse. In our simulations,
mean error typically improved by 0.004 per trial for about
100 trials (as found by a linear regression of error on trial
number), then became constant. These figures varied
with the coefficient 7 of the Widrow—Hoff equation.
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