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I review a new theoretical framework that from the computational nature of early vision
leads to algorithms for solving them and suggests a specific class of appropriate hardware. The
common computational structure of many early vision problems is that they are mathemati-
cally ill-posed in the sense of Hadamard. Standard regularization analysis can be used to solve
them in terms of variational principles that enforce constraints derived from a physical analysis
of the problem, see T. Poggio and V. Torre (Artificial Intelligence Lab. Memo No. 773, MIT,
Cambridge, Mass., 1984). Studies of human perception may reveal whether some principles ofa
similar type are exploited by biological vision. It can also be shown that the corresponding
variational principles are implemented in a natural way by analog networks, see T. Poggio and
C. Koch (Artificial Intelligence Lab. Memo No. 783, MIT, Cambridge, Mass., 1984). Specific
electrical and chemical networks for localizing edges and computing visual motion are derived.
These results suggest that local circuits of neurons may exploit this unconventional model of
computation. © 1985 Academic Press, Inc.

1. INTRODUCTION

One of the best definitions of early vision is that it is inverse optics—a set of
computational problems that both machines and biological organisms have to solve.
While in classical optics the problem is to determine the images of physical objects,
vision is confronted with the inverse problem of recovering 3-dimensional shape
from the light distribution in the image. Most processes of early vision such as
stereomatching, computation of motion, and all the “structure from” processes can
be regarded as solutions to inverse problems. This common characteristic of early
vision can be formalized: most early vision problems are “ill-posed problems” in the
sense of Hadamard. In this article we will first review a framework proposed by
Poggio and Torre [54]. They suggested that the mathematical theory developed for
regularizing ill-posed problems leads in a natural way to the solution of early vision
problems in terms of variational principles of a certain class. They argued that this is
a theoretical framework for some of the variational solutions already obtained in the
analysis of early vision processes. They also showed how several other problems in
early vision can be approached and solved. Thus the computational, ill-posed nature
of early vision problems dictates a specific class of algorithms for solving them,
based on variational principles of a certain class. It is natural to consider next which
classes of parallel hardware may efficiently implement regularization algorithms. We
are especially interested in implementations that are suggestive for biology. I will
thus review a model of computation proposed by Poggio and Koch [53] that maps
easily into biologically plausible mechanisms. They showed that a natural way of
implementing variational principles of the regularization type is to use electrical,
chemical, or neuronal networks. They also showed how to derive specific networks
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for solving several low-level vision problems, such as the computation of visual
motion and edge detection.

1.1. Variational Solutions to Vision Problems

In recent years, the computational approach to vision has begun to shed some
light on several specific problems. One of the recurring themes of this theoretical
analysis is the identification of physical constraints that make a given computational
problem determined and solvable. Some of the early and most successful examples
are the analyses of stereo matching (Marr and Poggio [43, 44]; Grimson [15, 16];
Mayhew and Frisby [45]; Kass [32]; for a review, see Nishihara and Poggio [50]) and
structure from motion (Uliman [68]). In these studies constraints such as continuity
of 3-D surfaces in the case of stereo matching and rigidity of objects in the case of
structure from motion play a critical role for obtaining a solution.

More recently, variational principles have been used to introduce specific physical
constraints. A variational principle defines the solution to a problem as the function
that minimizes an appropriate cost function. Many problems can be formulated in
this way, including laws that are normally expressed in terms of differential
equations. In physics, for instance, most of the basic laws have a compact formu-
lation in terms of variational principles, that require the minimization of a suitable
functional, such as the Lagrangian for classical mechanics. In vision, the problem of
interpolating visual surfaces through sparse depth data can be solved by minimizing
functionals that embed a constraint of smoothness [16, 17, 60, 61]. Thus, the surface
that best interpolates the data minimizes a certain cost functional which measures
how much the surface deviates from smoothness. Computational of the motion field
in the image can be successfully performed by finding the smoothest velocity field
consistent with the data [26, 20, 21]: in other words, among all possible velocity
fields that are consistent with the data a solution can be found by choosing the
velocity field that varies the least. In a similar way, shape can be recovered from
shading information in terms of a similar variational method [28].}

We wish to show that these variational principles follow in a natural and rigorous
way from the ill-posed nature of early vision problems. We will then propose a
general framework for “solving” many of the processes of early vision.

1.2. 1ll-Posed Problems

Hadamard (1923) defined a mathematical problem to be well posed when its
solution

(a) exists
(b) is unique
(c) depends continuously on the initial data (this condition is essentially

equivalent to saying that the solution is robust against noise, because it will change
only a little for small perturbations of the input data).

! The computation of subjective contours [67, 4, 25], of lightness [24], and of shape from contours [1, 5]
can also be formulated in terms of variational principles. Terzopoulos [60, 63] has recently reviewed the
use of a certain class of variational principles in vision problems within a rigorous theoretical framework.
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Most of the problems of classical physics are well posed, and Hadamard argued
that physical problems have to be well posed. “Inverse” problems, however, are
usually ill-posed. Inverse problems can usually be obtained from the direct problems
by exchanging the role of solution and data. Consider, for instance,

y=Az (1)

where A4 is a known operator. The direct problem is to determine y from z, the
inverse problem is to obtain z when y (“the data”) are given. Though the direct
problem is usually well posed, the inverse problem is usually ill-posed, when z and y
belong to a Hilbert space.

Typical ill-posed problems are analytic continuation, backsolving the heat equa-
tion, superresolution, computer tomography, image restoration, and the determina-
tion of the shape of a drum from its frequency of vibration, a problem which was
made famous by Kac [30]. In early vision, most problems are ill-posed because the
solution is not unique (but see later the case of edge detection), since the operator
corresponding to A is usually not injective, as in the case of shape from shading,
surface interpolation, and computation of motion (see Poggio and Torre [54)).

1.3. Regularization Methods

Rigorous regularization theories for “solving” ill-posed problems have been
developed during the past years (see especially Tikhonov [64], Tikhonov and Arsenin
[65], and Nashed [48, 49]. Most ill-posed problems are not sufficiently constrained.
To regularize them and make them well posed, one has to introduce generic
constraints on the problem. In this way, one attempts to force the solution to lie ina
subspace of the solution space, where it is well defined. The basic idea of regulariza-
tion techniques is to restrict the space of acceptable solutions by choosing the
function that minimizes an appropriate functional. The regularization of the ill-posed
problem of finding z from the data y such that Az =y requires the choice of norms
I| - || (usually quadratic) and of a stabilizing functional || Pz||. The choice is dictated by
mathematical considerations, and, most importantly, by a physical analysis of the
generic constraints on the problem. Three methods that can be applied (see Bertero
[3]) among the several standard regularization techniques are:

(I) Among z that satisfy ||Pz|| < C, where C is a constant, find z that
minimizes

4z = yli, (2)

(II) Among z that satisfy ||4z — y|| < C, find z that minimizes
Pz, (3)
(I1I) Find z that minimizes
4z = yII* + N|Pz|1%, (4)

where A is a regularization parameter.
The first method consists of finding the function z that satisfies the constraint
|IPz]| < C and best approximates the data. The second method computes the
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function z that is sufficiently close to the data (C depends on the estimated errors
and is zero if the data are noiseless) and is most “regular.” In the third method, the
regularization parameter A controls the compromise between the degree of regu-
larization of the solution and its closeness to the data. Standard regularization
theory provides techniques to determine the best A [65, 69]. It also provides a large
body of results about the form of the stabilizing functional P that ensure uniqueness
of the result and convergence. For instance, it is usually possible to ensure unique-
ness in the case of Tikhonov’s stabilizing functionals (also called stabilizers of pth
order) defined by

1P = écr(g)(j—;)zda (5)

where c(§) are positive weighting factors. Equation (5) can be extended in the
natural way to several dimensions. If one seeks regularized solutions of Eq. (1) with
P given by Eq. (5) in the Sobolev space W7 of functions that have square-integrable
derivatives up to pth order, the solution can be shown to be unique (up to the null
space of P), if 4 is linear and continuous. This is because for every p the space W,
is a Hilbert space and ||Pz||* is a quadratic functional (see Theorem 1, [65, p. 63]).
They all correspond to either interpolating or approximating splines (for method 11
and method III, respectively). In the following, I will refer to regularization methods
based on Tikhonov stabilizers as standard regularization theory. It turns out that
most stabilizing functionals used so far in early vision are of the Tikhonov type (see
also Terzopoulos, [60, 62]). I will discuss later the limitations of standard regulariza-
tion theory and the need to develop nonstandard regularization methods (possibly,
but not necessarily, of the type of Egs. (2), (3), and (4)) for solving satisfactorily
basic problems in vision.

1.4. Example 1. Motion

Our first claim is that variational principles introduced recently in early vision for
the problem of computation of motion and surface interpolation and approximation
are exactly equivalent to standard regularization techniques. The associated unique-
ness results are directly provided by regularization theory. We briefly discuss the
case of motion computation in its recent formulation by Hildreth [20, 21].

Consider the problem of determining the 2-dimensional velocity field along a
contour in the image. Local motion measurements along contours provide only the
component of velocity in the direction perpendicular to the contour. The component
of velocity tangential to the contour is invisible to a local detector that examines a
restricted region of the contour. Figure 1 shows how the local velocity vector V(s) is
decomposed into a perpendicular and a tangential component to the curve

V(s) =0v"(s)T(s) +v* (s)N(s). (6)

The perpendicular component v+ and direction vectors T(s) and N(s), are given
directly by the initial measurements, the “data.” The tangential component v™ (s) is
not and must be recovered to compute the full 2-dimensional velocity field V(s).
Thus the “inverse” problem of recovering V(s) from the data is ill-posed because the
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(a) (b)

F16. 1. Decomposition and ambiguity of the velocity field: (a) The local velocity vector V(s) in the
image plane is decomposed according to Eq. (6) into components perpendicular and tangent to the curve.
(b) Local measurements cannot measure the full velocity field; the circle undergoes pure translation; the
arrows represent the perpendicular components of velocity that can be measured from the images [54].

solution is not unique. Mathematically, this arises because the operator K defined by
vt=KV (7)

is not injective. Equation (7) describes the imaging process as applied to the physical
velocity field V which consists of the x and y components of the velocity field on the
image plane.

Intuitively, the set of measurements given by v+ (s) over an extended contour
should provide considerable constraint on the motion of the contour. An additional
generic constraint, however, is needed to determine this motion uniquely. For
instance, rigid motion on the plane is sufficient to determine V uniquely but is very
restrictive, since it does not cover the case of motion of a rigid object in space.
Hildreth suggested, following Horn and Schunck [26], that a more general constraint
is to find the smoothest velocity field among the set of possible velocity fields
consistent with the measurements. The choice of the specific form of this constraint
was guided by physical considerations— the real world consists of solid objects with
smooth surfaces whose projected velocity field is usually smooth—and by mathe-
matical considerations—especially uniqueness of the solution. Hildreth proposed
two algorithms: in the case of exact data the functional to be minimized is a measure
of the smoothness of the velocity field

1PV = | (%‘si)zds (8)

subject to the measurements v (s). Since in general there will be error in the
measurements of v+, the alternative method is to find V that minimizes

||Kv—ul||2+>\f(ﬂs’—)2ds. (9)

It is immediately seen that these schemes correspond to the second and third
regularizing method, respectively. (The constraint of rigid translatory motion in the
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image plane corresponds to using the first regularizing method with the same P and
C = 0.) Uniqueness of the solutions (proved by Hildreth for the case of Eq. (8)) is a
direct consequence for both Egs. (8) and (9) of standard theorems of regularization
theories. In addition, other results can be used to characterize how the correct
solution converges depending on the smoothing parameter A (Geiger, in prepara-
tion).

1.5. Example I1. Edge Detection

We have recently applied regularization techniques to another classical problem of
early vision—edge detection. Edge detection, intended as the process that attempts
to detect and localize changes of intensity in the image (this definition does not
encompass all the meanings of edge detection) is a problem of numerical differentia-
tion [66]. Notice that differentiation is a common operation in early vision and is not
restricted to edge detection. The problem is ill-posed because the solution does not
depend continuously on the data.

The intuitive reason for the ill-posed nature of the problem can be seen by
considering a function f(x) perturbed by a very small (in L, norm) “noise” term
esinQx. f(x) and f(x) + esin§x can be arbitrarily close for very small ¢, but their
derivatives may be very different if @ is large enough. This simply means that a
derivative operation “amplifies” high-frequency noise.

In 1-D, numerical differentiation can be regularized in the following way. The
“image” model is y;, = f(x,) + ¢, where y, is the data and e, represent errors in the
measurements. We want to estimate f’. We chose a regularizing functional || Pf|| =
J(f"(x))*dx, where f” is the second derivative of f. This choice corresponds to a
constraint of smoothness on the intensity profile. Its physical justification is that the
(noiseless) image is indeed very smooth because of the imaging process: the image is
a bandlimited function and has therefore bounded derivatives. The second regulariz-
ing method (no noise in the data) is equivalent then to using interpolating cubic
splines for differentiation. The third regularizing method, which is more natural
since it takes into account errors in the measurements, leads to the variational
problem of minimizing (see [57])

S (3= F(x)) + M [(17(x)) dx. (10)

Poggio et al. [55] have shown (a) that the solution f of this problem can be obtained
by convolving the data y, (assumed on a regular grid and satisfying appropriate
boundary conditions) with a convolution filter R, and (b) that the filter R is a cubic
spline with a shape very close to a Gaussian and a size controlled by the regulariza-
tion parameter A (see Fig. 2). Differentiation can then be accomplished by convolu-
tion of the data with the appropriate derivative of this filter. The optimal value of A
can be determined for instance by cross validation and other techniques. This
corresponds to finding the optimal scale of the filter (see [54]).

These results can be directly extended to two dimensions to cover both edge
detection and surface interpolation and approximation. The resulting filters are very
similar to two of the edge detection filters derived and extensively used in recent
years [42, 8, 66]. The Laplacian of the optimal filter found in this way seems,
however, to have slightly better performance than the Laplacian of a Gaussian.
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F1G. 2. The edge detection filter: (a) The convolution filter obtained (15) by regularizing the ill-posed
problem of edge detection with method (III) (solid line). It is a cubic spline, very similar to a Gaussian
(dotted line). (b) The first derivative of the filter for different values of the regularizing parameter A,
which effectively controls the scale of the filter. This 1-dimensional profile can be used for 2-dimensional
edge detection by filtering the image with oriented filters with this transversal crossection and choosing
the orientation with maximum response (see 16). The second derivative of the filter (not shown here) is
quite similar to the second derivative of a Gaussian [66].

It is important to notice that the result about convolution holds true more in
general: if the data are given on a regular grid with appropriate boundary conditions,
the solution of a standard regularization principle (Eq. 4, with Tikhonov stabilizers) is
equivalent to convolving the data with a precomputed filter [55].

Other problems in early vision such as shape from shading [28] and surface
interpolation [16, 17, 60-62] in addition to the computation of velocity, have already
been formulated and “solved” in similar ways using variational principles of the
type suggested by regularization techniques (although this was not realized at the
time—also, Ikeuchi and Horn’s formulation is nonquadratic). It is also clear that
other problems such as stereo and structure from motion can be approached in
terms of, possibly nonstandard, regularization analysis (see [54]).

1.6. Physical Plausibility of the Solution

Uniqueness of the solution of the regularized problem—which is ensured by
formulations such as Egs. (2)—(4)—is not the only (or even the most relevant)
concern of regularization analysis. Physical plausibility of the solution is the most
important criterion. The decision regarding the choice of the appropriate stabilizing
functional cannot be made judiciously from purely mathematical considerations. A
physical analysis of the problem and of its generic constraints play the main role.
Regularization theory provides a framework within which one has to seek con-
straints that are rooted in the physics of the visual world. This is, of course, the
challenge of regularization analysis.

In our example of the computation of motion the constraint of smoothness is
justified by the observation that the projection of 3-dimensional objects in motion
onto the image plane tends, in a probabilistic sense, to yield smoother velocity fields
(see [20, 21]). In the case of edge detection the constraint on the derivative of image
intensity is justified by the bandlimiting properties of the optics. In the case of
motion, however, as more dramatically in the case of surface reconstruction, the
constraint of smoothness is not always correct. This suggests that more general
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stabilizing functionals are needed to deal with the general problem of discontinuities
(see discussion).

A method for checking physical plausibility of a variational principle is, of course,
computer simulation. A simple technique we suggest is to use the Euler-Lagrange
equation associated with the variational problem. In the computation of motion,
Yuille [70] has obtained the following sufficient and necessary condition for the
solution of the variational principle equation (8), to be the correct physical solution

2
Vg
ds*
where T is the tangent vector to the contour and V is the true velocity field. The
equation is satisfied by uniform translation or expansion and by rotation only if the
contour is polygonal. These results suggest that algorithms based on the smoothness
principle will give correct results, and hence be useful for computer vision systems,
when (a) motion can be approximated locally by pure translation, rotation, or

expansion, or (b) objects have images consisting of connected straight lines.

In the case of edge detection (intended as numerical differentiation), the solution
is correct if and only if the intensity profile is a polynomial spline of odd degree [55].

From a more biological point of view, a careful comparison of the various
“regularization” solutions with human perception promises to be a very interesting
area of research, as suggested by Hildreth’s work on the computation of motion. For
some classes of motions and contours, the solution of Egs. (8) and (9) is not the
physically correct velocity field. In these cases, however, the human visual system
also appears to derive a similar, incorrect velocity field [20, 21].

2. ANALOG NETWORKS FOR SOLVING VARIATIONAL PROBLEMS

We consider now the question of which class of parallel hardware could efficiently
solve variational principles of the regularization type. The specific architecture
depends of course on the norm and the stabilizer P that are chosen. Standard
regularization methods (with quadratic norms and Tikhonov’s stabilizers) map into
two main classes of algorithms: convolution algorithms (for data on a regular grid)
and multigrid algorithms. These two classes of algorithms can be efficiently imple-
mented by architectures of N simple processors with local interconnections (possibly
with a multilevel structure) [60, 62]. Digital architecture of this type have only a
limited interest for biology. Poggio and Koch [53] have suggested a more “exotic”
type of hardware for implementing regularization solutions that suggests a new
model for neural computations.

It is well known that analog networks—chemical, electrical, or mechanical—are a
natural computational model for solving variational principles. The behavior of such
systems can be described using variational principle. Electrical network representa-
tions have been constructed for practically all of the field equations of physics—many
of them are equivalent to variational principles (for an electrical network implemen-
tation of Schrodinger’s equation, see Kron [36]). A fundamental reason for the
natural mapping between variational principles and electrical or chemical networks
is Hamilton’s least action principle (for more details see Koch and Poggio [35]).
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The class of variational principles that can be computed by analog networks is
dictated by Kirchhoff’s current and voltage laws (KCL and KVL), which simply
represent conservation and continuity restrictions satisfied by each network compo-
nent (appropriate variables are usually voltage and current for electrical networks
and affinity, i.e., chemical potential and chemical turnover rate for chemical systems).
KCL and KVL provide the unifying structure of network theory. A large body of
theoretical results is available about networks satisfying them, including classical
thermodynamics [52]. In particular, KCL and KVL imply Tellegen’s theorem.
Tellegen’s theorem captures the basic constraints provided by KCL and KVL. It is
one of the most general and powerful results of network theory and is independent
of any assumptions about constitutive relations or stationarity. (Tellegen’s theorem:
If U is the vector of branch potentials—with one component for each branch—and
J is the vector of branch flows, then U’-J = 0. Thus the flow and the potential
variables are orthogonal at any instant in time.)

For a network containing only sources and linear resistances, Tellegen’s theorem
implies Maxwell’s minimum heat theorem: the distribution of voltages and currents is
such that it minimizes the total power dissipated as heat. These results can be extended
to nonlinear circuit components [39, 51, 53], but in the following we will restrict
ourselves to linear networks (possibly with negative resistances). The power dis-
sipated by each linear resistance in the circuit is a quadratic term of the form

LV, (11)

where I, and V, are the current and the voltage respectively, corresponding to the
resistive process r,. It follows that any network consisting of linear resistances and
voltage sources E, minimizes the following associated quadratic functional

Yrdi = LB, (12a)
k i

where the second sum includes all the batteries. For a network of resistances and
current sources I,, the functional is given by

PNATEDW A (12b)
k i

where the second sum includes all the current sources and g, = 1/r,.

It is then easy to show the equivalence of Eqgs. (12) and the regularization principle
Egs. (4), (5). Thus, electrical networks of linear resistances and batteries (or current
sources) can solve quadratic variational principles of the form of Egs. (4), (5). The
solution is unique when Egs. (4), (5) yields a unique solution (which is usually the
case, see [54]).

Electrical networks of resistances and batteries do not have any dynamics. In
practice, however, small capacitances will be present and the stability of the network
must then be considered. It turns out that networks implementing regularization
principles of the form of Egs. (4), (5) are indeed stable, under the same conditions
that ensure a unique solution [53].

An equivalent way to see how electrical networks can implement variational
principles of the form of Egs. (4), (5) is to consider the associated Euler—Lagrange
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equations (the equivalence of variational principles with PDE also shows how to
map them into parallel digital architecture). Since the functional to be minimized is
quadratic, the Euler-Lagrange equations are linear, of the form Qz = b. They have a
unique solution z, corresponding to the unique solution of the variational principle.
In the discrete case, these equations correspond to n linear, coupled algebraic
equations. These equations can be implemented in a network containing only linear
resistances and sources. More precisely, the vector b, which depends on the data
(b = A*y), can always be represented in terms of current or voltage sources. The
matrix Q corresponds to the symmetric, real matrix of the network resistances [53].

Although their procedure will always yield an electrical network with linear
elements implementing Q, = b, its physical realization might require negative resis-
tances (if the corresponding term in Q is negative). An alternative implementation of
variational principles, common on analog computers, involves operational amplifiers
[29].

As pointed out by Terzopoulos in the context of vision (earlier, Horn [24]
proposed an analog implementation of the lightness computation) a significant
advantage of analog networks is their extreme parallelism and speed of convergence.
Furthermore, resistive networks are robust against random errors in the values of the
resistances [31]. A disadvantage is the limited precision of the analog signals.

2.1. An Example. Circuits for the Velocity Field Computation

We will consider next some specific networks for solving the optical flow compu-
tation. The simpler case is when the measurements of the perpendicular component
of the velocity, v*, at n points along the contours, are exact. In this case, the
discretized Euler—Lagrange equations, corresponding to the regularization solution,
Eq. (3), are [20]

(2 + “?)UiT — vy — o =4, (13)
where « is the curvature of the curve at location i, d, is a function of the data v;*
and the curve and v] is the unknown tangential component of the velocity v; at
location i to be computed. Figures 3a and 3b show two simple networks that solve
Eq. (13), where one network is the dual of the other. The equation describing the ith
node, in the case of Fig. 3b, is

(28+gi)Vi_gVi+1 —gVioi=1, (14)

where V, is the voltage—corresponding to the unknown v —and I; the injected
current at node i—corresponding to the measurement v;" . It is surprising that this
implementation does not require negative resistances. When the constraints are

satisfied only approximately (Eq. (5)), the equations are

(2 + lii)l/x» Ve~ V.. Lt oV, = d,,
o " o (11)
Q+2)V, =V, ~V, +teV,=d,

Yi+1

where /, depends on the contour and ¥, and ¥, denote the x and y component of
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Fic. 3. Resistive networks computing the smoothest velocity field. The first two networks correspond
to the situation where the constraints imposed by the data are to be satisfied exactly. The equation for the
current, which corresponds to the desired v in mesh i (for Fig. 1a), is given by 2r + r)I; — rl;y; —

rl,_, = E;, where the value of the battery E; depends on the velocity data v at location i. The voltage

at node i, corresponding to v}, for the network 1b, the dual of network la, is given by (2g + g)V; —

gV, — gVi_, = I;, where the injected current /; depends on the velocity data. Sampling the voltage
between nodes corresponds to linear interpolation between the node values. Network 1c, consisting of two
interconnected networks of the type shown in 1b, solves the velocity field problem when the data are not
exact. The equations for the ith nodes are 2g, + g, W;, — &V, — &V, + ¢V}, = d,, and Qg, +

Xi+1

&IV~ &V — gV, taV,=d,. However, unlike the two purely passive networks shown above,
an active element may be required, since the cross-term ¢;, relating the x and the y components of
velocity, can be negative. Such a negative resistance can be mimicked by operational amplifiers [53].

the unknown velocity v, at location i. The corresponding network is shown in Fig.
3c. The resistances ¢, can be either positive or negative, and may therefore require
active components such as operational amplifiers. More precisely, physically realiz-
able linear resistances, whether in electrical or in chemical systems, must dissipate
energy, i.e., they are constrained to the upper right and the lower left quadrant in the
I-V plane and can thus only be positive. There are at least three options for
implementing negative resistances using basic circuit components: (i) The positive
and negative resistances can be replaced in a purely resistive network by inductances
and capacitances, with impedance iwL and —i/(wC), respectively. The network
equations are then formulated in terms of the currents and voltages at the fixed
frequency w. (ii) The negative resistance can be implemented by the use of oper-
ational amplifiers or similar active circuit elements. (iii) One may exploit the negative
impedance regions in such highly nonlinear systems as the tunnel diode.

In the limit, as the meshes of the circuit become infinitesimally small, the network
solves the continuous variational problem, and not simply its discrete approxima-
tion.
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We have devised similar analog networks for solving other variational problems
[53] arising from regularization analysis of several early vision problems such as edge
detection [55] and surface interpolation [60, 62]. These networks are analog solutions
to certain kinds of spline interpolation and approximation problems. For instance,
in the case of surface interpolation the analog network solves the biharmonic
equation which is the Buler-Lagrange equation corresponding to the variational
problem associated with thin-plate splines [60]. The stabilizing functionals used in
regularization analysis of vision problems typically lead to local and limited connec-
tions between the components of the network.

2.2. Solving Ill-posed Problems with Biological Hardware

Analog electrical networks are a natural hardware for computing the class of
variational principles suggested by regularization analysis. Because of the well-known
isomorphism between electrical and chemical networks (see, e.g., [7 or 10]) that
derives from the common underlying mathematical structure, appropriate sets of
chemical reactions can be devised, at least in principle, to “simulate” exactly the
electrical circuits. Figure 4 shows chemical networks that are equivalent (in the
steady state) to the electrical circuit of Figs. 3b and c.

Electrical and chemical systems of this type therefore offer a computational model
for early vision that is quite difference from the digital computer. Equations are
“solved” in an implicit way, exploiting the physical constraints provided by
Kirchhoff’s laws. It is not difficult to imagine how this model of computation could
be extended to mixed electrochemical systems by the use of transducers, such as
chemical synapses, that can decouple two parts of a system, similarly to operational
amplifiers [53].

FiG. 4. Two examples of chemical networks solving the motion problem for exact measurements.
They are equivalent, under steady-state conditions, to the electric circuit of Fig. 3b. Figure 4a illustrates a
diffusion-reaction system. A substance A (the concentration of which corresponds to the desired v7)
diffuses along a cable while reacting with an extracellular substance S (first-order kinetics). The
corresponding on-rate k; varies from location to location. This could be achieved by a differential
concentration of an enzyme catalyzing the reaction or by varying the properties of the membrane where
the reaction has to take place. The off-rates can either be constant or vary with location. The inputs are
given by the influxes of substance A. Figure 2b shows a lumped chemical network, where n different,
well-mixed substances, interact with each other and with the substrate S. Assuming first-order kinetics,
these reactions can mimick a linear positive resistance under steady-state conditions. The input is given by
the influx M, and the output by the concentration of X [53].
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Could neural hardware exploit this model of computation? Increasing evidence
shows that electronic potentials play a primary role in many neurons [58] and that
membrane properties such as resistance, capacitance, and equivalent inductance
(arising through voltage and time-dependent conductances; see, e.g., [9, or 34] may
be effectively modulated by various types of neurotransmitters, acting over very
different time scales [41]. Dendrodendritic synapses and gap junctions serve to
mediate graded, analog interactions between neurons and do not rely on all-or-none
action potentials [14].

When implementing electrical networks in equivalent neuronal hardware, one can
exploit a number of elementary circuit elements (for possible neuronal implementa-
tions; see Fig. 5). Patches of neuronal membrane or cytoplasm can be treated as
resistance and capacitance. Voltage sources may be mimicked by synapses on
dendritic spines [35] or on small dendrites, whereas synapses on large dendrites act
as current sources. Chemical synapses could effectively serve to decouple different
parts of a network (see [53]). Chemical processes such as the reactions associated
with postsynaptic effects or with neuropeptides could also be thought as part of a
complex electrochemical network. Obviously, the analogy cannot be taken too
literally. It would be very surprising to find the exact neural analog of the circuit of
Fig. 5 somewhere in the CNS. We are convinced, however, that the siyle of
computation represented by analog circuits represents a very useful model for neural
computations as well as a challenge for future VLSI circuit designs.

3. CONCLUSION

The concept of ill-posed problems and the associated regularization theories seem
to provide a satisfactory theoretical framework for much of early vision. This
perspective justifies the use of variational principles of a certain type for solving
specific problems, and suggests how to approach other early vision problems. It
provides a link between the computational (ill-posed) nature of the problems and the
computational structure of the solution (as a variational principle). It also suggests
computational “hardware” that is natural for solving variational problems of the
type implied by regularization methods.

Fi1G. 5. This schematic figure illustrates a hypothetical neuronal implementation of the regularization
solution of the motion problem. A dendrite, acting both as pre- and post-synaptic element has a
membrane resistance that can vary with location. It can implement under steady-state conditions the
circuit 3b. The inputs—corresponding to the measurements v* —are given by synaptic mediated
currents, while the output voltages—corresponding to the desired v™ —are sampled by dendro-dendritic
synapses. The membrane resistance can be locally controlled by suitable synaptic inputs—corresponding
to the curvature of the contour— from additional synapses that open channels with a reversal potential
close to the resting potential of the dendrite. This scheme can be extended to the case where the
measurements of the perpendicular velocities are not exact, by having a similar, second dendrite (see also
Fig. 3c). The interaction between both dendrites takes place via two reciprocal chemical synapses. If the
corresponding cross-term in Eq. (15) is negative, the chemical synapses must be inverting, presynaptic
depolarization leading to a hyperpolarization [53].
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Despite its attractions, this theoretical synthesis of early vision also shows the
limitations that are intrinsic to the variational solutions proposed so far, and in any
case to the standard (Tikhonov’s) forms of the regularization approach. The basic
problem is the degree of smoothness required for the unknown function z that has
to be recovered. If z is very smooth, then it will be robust against noise in the data,
but it may be too smooth to be physically plausible. For instance, in visual surface
interpolation, the degree of smoothness obtained from a specific form of Egs. (4), (5)
—corresponding to so-called thin plate splines—smoothes depth discontinuities too
much and often leads to unrealistic results (but see [60, 62]). An interesting approach
to this problem is to parametrize with an additional parameter A—a function of
position—the order of the Tikhonov stabilizer. The question is then how to
determine the optimal value of the parameter.

Different (e.g., nonquadratic) variational principles may be used to attack the
general problem of discontinuities. Nonstandard variational principles may also
arise in another one of the most fundamental problems in early vision, the problem
of integrating different sources of information, such as stereo, motion, shape from
shading, etc. This problem is ill-posed, not just because the solution is not unique
(the standard case), but because the solution is usually overconstrained and may not
exist (because of noise in the data). For instance, the problem of combining several
different sources of surface information may easily lead to nonquadratic regulariza-
tion expressions (though different “noninteracting” constraints can be combined in
a convex way, see Terzopoulos, [60, 62]). These minimization problems will in
general have multiple local minima.

Again, analog networks may be used to solve these minimization problems, with
multiple local minima corresponding to the zeros of the mixed potential [6, 52].
Schemes similar to annealing [47, 33, 22] may be easily implemented by appropriate
sources of Gaussian noise driving the analog network. The associated differential
equation describing the dynamics of the system is then a stochastic differential
equation. The stochastic differential equations (“Langevin” equations) describing an
electrical or a chemical system with a source of Gaussian noise (e.g., voltage or the
presence of a chemical reactive substance) can be formulated in terms of Ito or
Stratonovitch calculus [13]. They can be solved with the Fokker-Planck or the
Kolmogorov method. A “solution” of a stochastic differential equation is a char-
acterization in terms of probability distributions of the “output” process. For linear
networks, simpler correlation methods can also be used. If the noise is white and
Gaussian, its spectral density is proportional to the “temperature” 7. In a chemical
network “noise” may be introduced in various, simple ways.

Needless to say, a number of biophysical mechanisms, such as somatic and
dendritic action potentials, interactions between conductance changes, voltage, and
time-dependent conductances, etc., are likely to be used by neurons and patches of
membrane to perform a variety of nonlinear operations.

I conclude with a caution note, that hopefully will turn out to be too conservative.
The range of applicability of variational principles is related to the deep question of
the computational organization of a visual processor and its control structure. It is
unlikely that variational principles alone could have enough flexibility to control and
coordinate the different modules of early vision and their interaction with higher
level knowledge. This also hints at the basic limitation of present regularization
methods that makes them suitable only for the first stages of vision. They derive
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numerical representations—surfaces—from numerical representations—images.
However, it is not difficult to see how the computation of the more symbolic type of
representations that are essential for a powerful vision processor represent a form of
regularization. The restriction of the solution space to a set of “symbols” regularizes
an ill-posed problem. Standard regularization methods restrict the solution space to
the set of generalized splines.
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