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Abstract

The problem of determining the nonlinear function ("black-
box") which optimally associates (on given criteria) two sets of data
is considered. The data are given as discrete, finite column vectors,
forming two matrices X ("input") and Y ("output") with the same
numbers of columns and an arbitrary numbers of rows. An iteration
method based on the concept of the generalized inverse of a matrix
provides the polynomial mapping of degree k on X by which Y is
retrieved in an optimal way in the least squares sense. The results
can be applied to a wide class of problems since such polynomial
mappings may approximate any continuous real function from the
"input" space to the "output" space to any required degree of
accuracy. Conditions under which the optimal estimate is linear are
given. Linear transformations on the input key-vectors and analogies
with the "whitening" approach are also discussed. Conditions of
"stationarity" on the processes of which X and Yare assumed to
represent a set of sample sequences can be easily introduced. The
optimal linear estimate is given by a discrete counterpart of the
Wiener-Hopf equation and, if the key-signals are noise-like, the
holographic-like scheme of associative memory is obtained, as the
optimal nonlinear estimator. The theory can be applied to the
system identification problem. It is finally suggested that the results
outlined here may be relevant to the construction of models of
associative, distributed memory.

t. Introduction

The problem of determining the operator, which
optimally associates (on given criteria) a set of items
with another set of items, is of considerable interest
in a variety of areas.

First, the problem meets the most natural definition
of associative recall as given in terms of stimuli and
responses. A black-box can be said to associate two
signals if when presented with one as input, it "recalls"
the other as output. In the past few years a number of
models have dealt with specific networks of this kind;
both linear and not-linear systems have been examined
(van Heerden, 1963; Anderson, 1968, 1972; Gabor,
1969; Longuet-Higgins, 1968, 1970; Kohonen, 1972;
Marr, 1969, 1970; Willshaw, 1971, 1972; Cooper,
1974). At the present time it seems as if such models
may be relevant to the problem of how the brain
stores and retrieves information.

Secondly, the problem is closely connected with the
system identification problem (Balakrishnan, 1967);
that is, the task of characterizing a system from known
input-output data, of finding the underlying "laws".
A general setting for this problem is estimation theory.
I will consider here a discrete, "deterministic" case:
n m-components column vectors xj represent the key-
signals with which a suitable mapping has to associate
optimally n r-components column vectors yi which
are the signals to be retrieved. The purpose of the
present paper is to show how to obtain the nonlinear
mapping 0 which represents the optimal solution, in
the least square sense, of the equation

Y = 0 (X) Y E .A(m, n), X E .A(r, n) (1.1)

for given Y and X, Y and X being arbitrary (possibly
rectangular) real valued matrices. The class of map-
pings 0 considered here is restricted (for each com-
ponent of yi) to the class of polynomial mappings of
degree k in the vector space V (over the real field) to
which the vectors xj belong. The basic Eq. (1.1) can
be therefore specialized to

Y = Lo+ L1(X) + Lz(X, X)+ ... + Lk(X, ..., X), (1.2)

where Y and X are arbitrary real valued matrices (the
set of column vectors yi and xj respectively) and Lk
is a k-linear (symmetric) mapping (Dieudonne, 1969)
V x V x ... x V -+ W. W is a vector space defined,
as V, over the real field; the vectors yi are elements
of W. With (LJi,a,...ak defined as the k-way real matrix
associated to the mapping L", Eq. (1.2)can be explicitly
rewritten as

¥;j = (LO)ij + I (L1);,a, X ad
a,

+ I (LZ)i,a,a2XadXa2j+'"
ala,

(1.3)

+ I (LJi,a,...akXad",Xad'
a,...ak

The restriction to real-valued quantities is introduced
here for simplicity; for a more general approach see
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Poggio (1975b). The paper deals only with estimators
(the mappings 0 from X to Y) which are optimal on
the mean-square criterion. A discussion of which
other criteria yield the same estimators will be given
elsewhere.

Not all "black-boxes" operating on discrete
matrices of data can have a representation of the form
(1.2). However, the polynomial representation (1.2)
is fairly general as shown by th~ classical Weierstrass-
Stone theorem (see Dieudonne, 1969).This provides
a simple proof that the real valued polynomials in
n-variables, defined on a compact subset E of IRn,are
dense in the family of real-valued continuous functions
on E in the uniform norm topology. The theorem can
be applied vector-wise and component-wise to Eq. (1.2),
implying that the "black-boxes" considered here may
include all real continuous m-components functions
in r variables. This topic will be further discussed in a
forthcoming paper (Poggio, 1975b) together with
some extensions of (1.1) and (1.2).

When the optimum mapping 0 is restricted to the
linear term L1 of (1.2) the solution to this problem is
in terms of a generalized inverse for matrices, as given
by Penrose (1956) (see Appendix). The significance of
this result in the context of associative models of
memory has been pointed out by Kohonen and
Ruohonen (1973). In this paper the solution to the
general nonlinear problem is in the form of an iterative
method capable of approximating the optimal
sequence {Lo, ...Lk} to an arbitrary degree of accuracy.
The plan of the paper is as follows. Section 2 gives the
optimal nonlinear correction of degree k as the best
approximate k-linear mapping which solves the equa-
tion E = Lk(X, ..., X). In Section 3 the conditions
under which the optimal estimate of the form (1.2) is
linear are discussed. An iteration method which
provides the optimal polynomial estimation of a
chosen degree is developed in Section 4. At first the
optimal solution of zero degree Do for the given X
and Y is determined; the first order optimal correction
D1 when X, Y, and Doare given is then computed and
so on until the k order correction. At that point the
calculation are iterated, starting again with the
optimal zero order optimal correction when X, Y,
Do... Dk are given. Linear "codings" of the input set
are discussed in Section 5. Section 6 deals with linear
optimal estimation under restrictions of "stationarity"
on the processes of which the vectors {xj} and {yi}
are assumed to be sample sequences. Finally the
system identification problem is briefly discussed in
Section 7.

The following notation will be used: Lk is a k-linear
mapping and (L0i.'""""" the associated k-way matrix

with real elements. £k indicates an estimation of Lk'
A is a rectangular matrix, with transpose A* and
generalized inverse At. The sum of the squares of the
elements of A is written IIAll and the commutator
AB - BA, if it exists, is written as [A, BJ. AB, without
indices, indicates the product of two matrices, in the
usual sense.

2. Optimal N-Order Correction

The optimal zero-order solution of (1.2) with
Y EvIt (m, n), X EvIt (r, n) is given by the associated
normal equation as

1
(LO)ij = - Lq Yqjm j=1,...,n. (2.1)i=1,...,m

Unless otherwise stated I will assume, for simplicity,
that the zero-order optimal solution is zero. In other
words the signal vectors are assumed to have zero
mean.

The first order optimal solution of (1.2) is the best
approximate solution of

Y = L1(X) (2.2)

and it is given as

(L1)ij= (YXt)ij , (2.3)

where xt is the generalized inverse of X. This result is
due to Penrose (1956). Xtalways exists for any
arbitrary matrix X; it is unique and can be calculated
in a number of ways; its main properties are given in
the Appendix. Of course if the matrix X is square and
non-singular X-I = xt exists and then (2.3) is an
exact solution of (1.2).

In many cases the estimation (2.3)does not provide
an exact "retrieval". I define the first order error matrix
to be

E1 = Y -£I(X)= Y(J-xt X) E1EvIt(m,n). (2.4)

Every linear correction ALl to the optimum linear
estimator is identically zero. The verification is trivial
since the optimum linear solution of E1= AL1X is
ALl = E1xt = Y(J- xt X) xt == 0 because of prop-
erty (A.2).I therefore ask for the optimal second order
correction which is equivalent to finding the best
approximate solution £2 of

E1 = L2(X, X) (2.5)

or, written explicitly,

(Edij = L (L2)i.ala,XatiXa,j'
ala,

(2.6)
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It is here convenient to define the matrix

(CZ)a,j= (CZ)~I~z,j= X~ljX~zj Cz EJ/t(rZ, n), (2,7)

where the map nZ :0(1O(z--a uses collective indices

O(IO(Z= 11
a= 1

12

2

rr

rZ,

21

r+l

The transpose of (2,7) is defined as

(CZ)~b = (CZ)~PI pz = X~PI X~Pz'

For instance the matrix C2 associated with a 2 x 3
matrix X

X =
(

Xli

X21

Xu X13

)X22 X23

is given by (2,7) as a 4 x 3 matrix

It is clear how C2 can be explicitly constructed for
arbitrary X.

The extension to higher order is obvious: (2.4) and
(2.7) become

Ek = Y - Lk(X,.,., X), (2.9)

(CJa.j= (CJal...ak,j = Xad'" Xad' CkErIf(r\n) (2.10)

under the map nk. Of course C I = X and n I is the
associated identity map.

Theorem 2.1

The best approximate solution
equation Ek-I = Lk(X,..., X) is

~ - t
(LJij - (Ek- I Ck)ij'

Proof: The equation

ik(k ~ 1) of the

(2.11)

(Ek- I)ij = L: (LJi,al...akXad'" Xad
a\,...,ak

is rewritten under the nk map as the linear equation

(Ek-I)ij = L: (LJi,a(CJa,j' (Lk)i,a E vii (m, k)
a

Ck EvII(r\ n)

to which Theorem A-3 applies. Of course when k = 1
~ the theorem is identical with Theorem A-3. One can

easily check that the normal equation associated with a
minimum of

IIEkl1=tr{[Ek-1 -Lk(X,...,X)] [Ek-I -Lk(X,...,X)]*}
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is satisfied by (2.11)and that (2.11)does givea minimum
ofllE&

The following lemma provides an easy way to
calculate C!.

Lemma 2.1

Cf Ck= (X* X)0 , (2.12)

(2.8)

where @indicates the operation of raising the elements
of a matrix to the k-th power.

Proof: I write explicitly

(Ck* Ck).. = "C:t' C .IJ L., I,al...ak at...ak,)
al,...,ak

L: X1al...xt~kXad",Xakj
al ak

= (~X1aXaj)k = [(X* X)ij]k
= (X*X)0 .

Using (2.12) and (A.11) q can be obtained from

q = [(X* X)@]tq (2.13)

and since (X* X)<!Jis square and symmetric one may,
for instance, use the method outlined in the Appendix
to compute its generalized inverse. Moreover the
following theorem holds

Theorem 2.2

If (X* X)<!Jis non-singular the k-th order optimal
correction is exact.

Proof: If (X* X)<!Jis non-singular it has an inverse.
Because of Lemma 2.1 the k-th order optimal correc-
tion gives

Lk(X,...,X) = Ek-I qCk=Ek-I[(X* X)<!J]t[(X* X)0] ,

which is Ek- I' if the inverse of (X* Xr!>exists.
In particular if (X* X) -I exists the optimal linear

approximation is exact; if [(X* Xr~r I exists the
second order correction is' exact, that is it provides an
estimation with an associated zero mean square error.

3. Linearity of the OptimalEstimation

It is natural to ask for which class of matrices X is
the linear optimal estimation also the optimal estima-
tion of the type (1.2). If (X* X) - I exists the optimal
estimation is obviously linear. The following theorem
attempts a more general characterization.

Theorem 3.1

The optimal linear solution of Y =O(X) cannot be
improved, for arbitrary Y, by a k-th order correction

- ~

exu

X12' X12

X"X")

XlI'X21 X12'X22 X13'X23
Cz=

X21'XlI X22 'X12 X23' X13

X21'X21 X22' X22 X23' X23
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if and only if

xt X = C!Ck+Z(I - qCJ,

where Z E .It (n,n) is arbitrary.
Proof: The condition for the k-th correction to be

zero IS

'\ " (E 1). (Ckt ) C .= 0L, L, .q q,a,...ak a,...ak,) ,
q a, ,ak

that is
Y(I -xt X) qck=O.

Theorem A.2 guarantees that a solution xt X of (3.2)
always exists; moreover it provides the general
solution of (3.2) in the form

xt x= yt Y(I -Z) qck+Z,

where Z is arbitrary. If (3.2) has to be valid for
arbitrary Y, it reduces to

q Ck = xt X q Ck . (3.4)

Again Theorem A.2 gives the general solution xt X
of (3.4) as (3.1).

A particular class of matrices X for which the optimal linear
estimation cannot be improved by any k-th order correction is
further characterized by means of the following lemma

Lemma 3./

If X* X is a square blocks diagonal matrix

(

A ... 0

)

X* X = ... B ...

0 ... ...

with A, B... square sub matrices with all elements equal (in particular
A, B... can be simply numbers), then

xt X = q Ck for all k.

Proof: If (X* X) has the structure (3.5), q Ck has the same
structure because of Lemma 2.1. Furthermore,

(

A(!) ...

qck= ... B(!)

0 ... l
It is easily verified (from A.I to A.4) that

(

s ... 0

)

'

(

s ... 0

) (

sts ... 0

)

... T... ... T ... = ... TtT ... .

0 ... 0 ... 0 ...

Therefore consideration of (A (j),A (j)) is enough. The square matrix
A E .If (h, h) with h ~ n can be expressed as

A=al1,

(3.1)

where 11is the matrix h x h with all elements equal to 1. Note that
I

l1t = ~ 11.Because of (A.7)h

AtA=atal1tl1 (3.10)

and since (an)t an = at a, one obtains

~ (A(!))tA(!)=AtA. (3.11)

From (A.UI.0.8), and (3.11) the following relation is satisfied

(3.2)

q Ck = [(X* X)(j)J' [(X* X)(!)] = (X* X)t (X* X)

and finally,

(3.12)

qck=xtX. (3.13)

Matrices with other structures also satisfy property (3.13): for
instance the matrices X for which (X* X) - 1 exists, or the matrices X
such that X* X contains only 0 and 1. This brings us to Theorem 3.2.

(3.3) Theorem 3.2

For a matrix X which is such that either (X* X)-l exists or (X* X)

has elements equal either to 0 or to I or (X* X) has the diagonal square
blocks structure of Lemma 3.1, the optimal linear solution of (1.1) is
the optimal nonlinear solution of the form (1.2).

Proof: In all cases xt X = ct c'" which is a particular solution
of (3.1). Theorem 3.1 says that any nonlinear correction cannot
improve the linear optimal estimation which is therefore the optimal
one.

It is interesting that the key-vectors characterized by Theorem
3.2 have some analogies with the "noiselike" signals usually con-
sidered in holographic-like memory schemes. The analogy will
become clearer later on. It is also possible to generalize the results
of this section to characterize the conditions under which an optimal
k-order estimation is optimal.

4. The Iteration Method

(3.5)
There is no reason to assume a priori that the

second order correction to the best linear approxima-
tion is equal to the optimal second order approxima-
tion of the class (1.2). Although in many practical
cases, either (X* X) -lor (Ci C2)-1 exist, which
automatically solves the problem, in general this is
not the case, as the next theorem indicates.(3.6)

Theorem 4./

(3.7)
The second order correction to a first order optimal

solution of (1.2) gives the optimal second order solution
if and only if X satisfies to

xt xqc2xt= qc2xt. (4.1)

(3.8)
Proof: The optimal quadratic correction to the

optimal linear solution of Y = O(X) is given by

E1qC2 E1=Y(I-XtX). (4.2)

The optimal linear correction to

(3.9) y= yxtx +E1 qC2 (4.3)
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E2 xt X with E2 = Y- Y. (4.4)

Equation (4.3) is the optimal second order solution if
and only if the zero order correction is zero (and this
is automatically satisfied if LkYk"= 0 as assumed
previously) and

E2Xt=0. (4.5)

arbitrary Y (4.5) holds, Eq. (4.1)Provided that for
follows easily.

For instance, condition (4.1) will be satisfied if
either [q C2,xt] = 0 or [q C2,xt X] = O. Those
X matrices for which the optimal linear solution
cannot be improved by a second order correction
[they satisfy (3.1) for k = 2] consistently satisfy (4.1).
Counterexamples to (4.1)can be constructed. Therefore
to find the general optimal approximation of degree k
it seems necessary to resort to an iterative scheme.
The steps are:

I) The optimum approximation of zero degree
(which is no longer restricted to zero) and the sequences
of optimal corrections up to the degree k are calculated,
as outlined before.

II) The optimum corrections to the result of step I)
are computed for all degrees, starting again from the
zero order degree.

III) H..
The iteration results in a series of i-ways matrices

(i = 1,2, ..., k) and in the associated mean square errors
~I ~I ~I . ~II ~II ~II.
Eo,E" H.,Ek,Lo,L" ...,Lb H'

I' I II II II (4.6)
IIEoll, IIE,II, H" IIEkll; IIEoll, IIE,II, H" IIEkII;'H .

The iteration algorithm outlined here (adapted from
Katzenelson et al., 1964)gives at each step a meaningful
result. Convergence of the iteration algorithm, as well
as the uniqueness of the optimum estimator {Lo'H.,Lk}
up to an estimator which does not affect the mean
square error, are proved in the next theorem.

Theorem 4.2

The iterative algorithm
a) has a limit k-th order estimator;
b) the limit estimator is the optimal k-th order

estimator in the least square sense;
c) the limit estimator is unique up to an estimator

of the same degree which does not affect the mean
square error.

Proof: a) The sequence (4.6) has the property

IIE~II~ IIE~II if h>m, k~N. (4.7)

205

Thus the series IIE~II(N = 1,2, H') is monotonically
decreasing. Since IIE~II ~ 0 for every Nand r, the
series is bounded from below. Therefore the limit

lim IIE~II= IIEII
N-oo

(4.8)

exists. Corresponding to IIEIIone obtains the limit
estimator {Lo, L" H" Ld as

~ . ~ N
Li= hm LiN-oo i=i,'Hk. (4.9)

b) At each correction the mean square error
decreases or remains the same. In fact (4.7) holds and
moreover it is easy to prove [from (2.1)] that

IIE~II~ IIEtt+111. (4.10)

Assume now that {Lo, L" H' Lk}' the limit of the
iterative algorithm, is not a solution of the normal
equations

Li Yi" = Li [(Lo)" + (L, X)i" + H. + (Lk CJiJ

YX* =(Lo +L,X + ... + LkCk) X* (4.11)

Yq = (Lo + L, X + ... + LkCk)q .

In this hypothesis L, ...Lk can be assumed and the
optimal zero-th order correction can be found as
,1Lo. If ,1Lo =1=0 the associated mean square error is
now smaller than IIEIIwhich is in contradiction
with (a).

c) Suppose that the two sequences

{Lo,L,; H.Lk} {L~,i~, ...LD

are both limits of the iterative process, satisfying the
associated normal equations Eq. (4.11).I will show that
the corresponding mean square errors are equal.
Calling

L~=Lo + ,1Lo

(4.12)

Lk =Lk +,1Lk

it follows from (4.11) that

Li [(,1Lo)" + (,1L, X)i" + H' + (,1ikcJiJ = 0

(4.13)

(,1Lo+... + ,1LkcJ q = O.

It is then straightforward to verifythat

IIELo L;,11= tr{[Y-(i~ +L',x +... +LkcJJ
. [Y -(L~ +L',x + ...LkCk]*} (4.14)

= IIELo dl.
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5. Linear"Coding"

If the key-signals matrix, X, is such that (X*X) is
diagonal, then (Theorem 2.2) the optimal polynomial
estimation is identical with the optimal linear estima-
tion. This simple observation suggests a possible
"coding" scheme which has obvious analogies with
the whitening approach used in deriving optimal
estimators in gaussian noise.

"Whitening" Scheme: given Y and X, X can be
always transformed into

X'=XS X E J!t(r, n) (5.1)S E J!t (n, n)

with the matrix S.S is the unitary matrix which reduces
(X* X) to a diagonal form (since X* X is symmetric S
always exists) through S*(X* X)S. Then the optimal
polynomial solution of Y = O(X') is the optimal
linear one.

Note that the optimal estimate for Y = O(X) and
the optimal one for Y = O(X') generally do not give
the same error. The following theorem indicates a
class of linear "coding" transformations on the key
signals xj, which do not affect the performance of the
estimator.

Theorem 5.1

If X is transformed into

X' = T(X), T linear mapping, X' E A/(z, n) (5.2)

the optimal (nonlinear) polynomial solution of Y = O(X')
yields the same performance as the optimum (nonlinear)
solution of Y= O(X), provided that T-l, defined as

T-1 [T(X)] = X, (5.3)
exists.

Proof: Suppose that

Lo+L1(X) + ... + Lk(X, ..., X)

is the optimal k order polynomial estimate for Y = O(X),
and

L~ + i'1 (X') +... +L~(X',..., X')

it the optimal k order polynomial estimate for Y = 0 (X').
I claim that the performances of the two estimations
are identical. Suppose that (5.5) were a better estima-
tion than (5.4): this is absurd since the k-th order

L~ + i'1 T(X) + ... + L~T... T(X, ..., X) (5.6)

would be better than the optimal estimation (5.4).
Suppose that (5.5) were a worse estimation than (5.4):
this is absurd since the k-th order

io + L[ T-1(X') + ... + LkT-1... T-1(X', ..., X') (5.7)

would be better than the optimal estimation (5.5).

Clearly the transformation X' = X S by the matrix S
[see (5.1)] cannot generally satisfy the requirement
(5.3): note that [X, S] = 0 implies (X*X) being already
diagonal!

6. A Restrictionof "Stationarity"

Define the matrices [X E"It (r, n); Y EJ!t (m,n)]

Sit = Yia,X:'t

~t= XjaX:t

S E J!t(m, r)

TEJ!t(r,r)
(6.1)

and suppose that the signals yf = Yia, xj' = Xja'
satisfy the conditions

Sit = rUq(ji.t+q,

Tjt=rvp(jj,t+P;

(6.2)

(6.3)

the vectors u and v are defined as

1 a' a'
Uq=-I:a, Yt+qXt ,r (6.4)

1
vp= - I:ax~+pX~ .r (6.5)

with -(r-1)~q~(m-1) and -(r-1)~p~(r-1);
indices t and w can assume any arbitrary value for
which the corresponding vector components exist.
The optimal first order solution (without zero-order
term) of Y = O(X) is given as usual by Y = i[ X with
L1 = yxt. Property (A.15) gives

L1 = Y X*(X X*)t ,

which becomes, through (6.1) and (A.7)

L1 = STt .

(6.6)

(6.7)

(5.4)

Note that the (finite) matrices Sand T have the
typical structure of the matrices which belong to the
multiplication space of the convolution algebra (see
Borsellinoet al., 1973).Ofcourse T is a real,symmetric
matrix (T = X X*). Moreover, if the vectors xa are
sample sequences ofa stationary (wide sense) stochastic
process, the vector vp is an estimate of the ensemble
autocorrelation of the stochastic process. In this case
standard theorems (see Doob, 1953) can be used to
characterize the matrix T (Poggio, 1975b). When the
inverse of vp(jJ,j+p exists, Eq. (6.7)becomes completely
equivalent to the standard result of the Wiener-
Kolmogorov filtering theory.

It is interesting to consider the case in which the
"ensemble autocorrelation" of xa satisfies to

(5.5)

vp=(jp,o, (6.8)

(6.9)
that is

(X X*)fj = Tfj = r(j J,j'



Then the optimal linear estimation is

1';"= (it)ijXj" = Uq(ji,j+qXq"= (U*X")i. (6.10)

If the x" vectors are "noiselike unities", in the sense of
Borsellino et al. (xi xj' = (jiA",'), then

X* X = I , (6.11)

This is a finite discrete scheme analoguous to the one
usually considered in holographic-like associative
memories [see for instance Eq. (3) in Borsellino et aI.,
1973]; the introduction of (6,11) is similar to the
hypothesis of ergodicity on the processes of which x"
and y" are sample sequences. Of course (6.11) implies
by itself that the optimal linear estimation (6.10) is
also the (exact) optimal nonlinear estimation. This is a
familiar result, since the optimality (in the Wiener
sense) of the holographic coding scheme for "noiselike"
key signals is well known in the theory of holography.
Cowan (unpublished note) and more recently Pfaffel-.
huber (1975) have stressed a similar point which is
now recovered in our nonlinear framework.

Extensions of the arguments of this section to nonlinear higher-
order corrections are possible: for instance, the nonlinear holo-
graphic-like algorithm proposed by Poggio (1973) which extends the
typical correlation-convolution sequence to a sequence of a gener-
alized correlations and generalized convolutions [@; and *; defined
in Poggio (1973) and Geiger et al. (1975), respectively], can be thus
recovered.

7. The IdentificationProblem

I shall briefly outline the system identification
problem in the framework of this approach. One may
distinguish two classes of problems in the identification
of a system:

a) the input-output set of data is given (as the X
and Y matrices, in this paper) and the problem is to
find the (nonlinear) input-output mapping, which
corresponds, in practical cases, to a physical system;

b) the (nonlinear) "black-box" is physically ac-
cessible, the set of (discrete) input vectors {x"} = X
can be chosen and the output set {y"} = Y can be
observed. The problem is to choose the input X in
such a way that the input-output mapping performed
by the system can be always determined.

Case (a) is closely connected to the estimation problem con-
sidered in this paper. Theorem 2.1 and Theorem 4.2 provide a
general solution to (a). Note that in some specific situations the
mapping to be determined may have to be restricted a priori to
specific terms of representation (1.2). In these instances Theorem 2.1
rather than the iterative method represents the basic tool to solve
the problem.

Case (b) lies somewhat outside the scope of this paper. However,
it has a practical interest and has obvious connections with the well
known equivalent problem for operators or functionals (see Lee
and Schetzen, 1965). I will here outline a solution to (b), adapting
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a method of Barrett (1963) to the formalism of this paper. A more
complete discussion will be given in Poggio (1975b).

For a given set of vector inputs {xl} = Xij' X E Jf(r, n) an
orthogonalization procedure can always produce a set of sym-
metrical polynomials Pk in X with the property that any two poly-
nomials of different degree are orthogonal; namely,

Lj[Pk(X)]., APh*(X)]j.PI...P.= (jk.hRk (7.1)

with Rk = c(k) if PI' ... Pk is a permutation of ai, ..., ak'Rk = 0 other-
wise.

A simple case is when the vectors {x!} are chosen as sample
sequences (one for each J) of independent and normally distributed
vafiables with zero mean and unit variance. In this case the poly-
nomials are multidimensional Hermite polynomials; summation
over j gives an estimation (good for large n) of the ensemble average.
Thus (7.t) holds approximately with c(k) = k!. The first polynomials
are

Ho(X) = 1

[HI(X)].,.j= X~I

[H2(X)].'.',i = X~IX~, - (j.,."

(7.2)

The "black-box" to be identified is assumed to have the representa-

tion {Eo, ..., E.}; the input-output mapping is

Y,j = (EO)i.j + L (Elk., [H, (X)]."j+'".,
+ L (£k)i,., [Hk(X)]., ,j'

(7.3)

.,...,,

The identification of the system is performed through the following
operation on the output

(L~k.""., ~ h\ L Y,j[Hh*(X)h.",., t ;£h;£ k . (7.4). )

Of course from (7.3) a representation of the form (1.2) can be
recovered. Under restrictions of "stationarity" (in the sense of
Section 6) the approach outlined above leads in a natural way to an
identification scheme essentially equivalent to the "white-noise"
method (see Lee and Schetzen, 1965).

8. Conclusion

More detailed theoretical extensions of the theory
outlined here will be presented in a forthcoming
paper (Poggio, 1975b). A generalization to signal
vectors being infinite sequences of (complex) numbers
should allow a more general reformulation of the
theory. Connections with the theory of polynomial
operators will also be examined.

The present paper suggests a number of interesting
applications. They will be discussed and further
developed in a future work (Poggio, 1975b). I will
briefly outline some of them.

. Regression analysis and, in general, nonlinear
optimal estimation have a number of connections
with the approach presented here which seems to
provide in many cases a simple and constructive
answer to the identification problem, the problem of
characterizing a nonlinear "black-box" from a set
of input-output data. The usual problem deals with
the characterization of functional operators; however,
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it is important to point out that for many practical
purposes the available data have the discrete, finite
structure assumed here.

Another area in which the results of this paper
may bear some interest has to do with the theories of
associative recall, in connection either with the field
of parallel computation or with the problem of how
the brain stores and retrieves information. A variety
of models of associative recall have been recently
proposed. They have usually taken the form of a
specific network, which stores information in a
distributed and content-addressable fashion. Most of
these networks have a similar formal structure but
quite different "physical" implementations. Some, like
the Associative Net of Willshaw (1972)may be realized
in neural tissue (compare Marr, 1969). However the
physiological evidence is, at present, far from providing
useful constraints for the mechanisms actually
involved. Therefore it seems important to characterize
in a general way the common underlying logic of
these models of associative distributed memory. So
far no general formalism was available. A solution
to the problem may be now provided by the formal
scheme outlined in this paper. In fact a very large
class of nonlinear associative memory algorithms can
be described by a representation of the type of (1.2).
Providing the optimum algorithm (in the mean-square
sense) of this form, this paper may also suggest how
specific models can be classified and compared. The
issue of nonlinearity, embedded in a natural way in
the present scheme, may prove to be especially
important (see comment in Section 7 and: Longuet-
Higgins et ai., 1970; Poggio, 1973,1974;Cooper, 1974).

Finally, this paper is hoped to provide a theoretical
background for developing a general approach to the
learning of classifications as well as to inductive
generalization, somewhat in the directions implied
by the work of Marr (1969, 1970)and Willshaw (1972).

Appendix

The generalized inverse exists for any (possibly rectangular)
matrix whatsoever with complex elements. Here the conjugate
transpose of A is indicated with A*.

The generalized inverse of A is defined (Penrose, 1955) to be
the unique matrix At satisfying to

AAtA=A,

AtAAt=At,

(AAt)* = AAt ,

(AtA)*=AtA.

(A- t)

(A-2)

(A-3)

(A-4)

If A is real, so also is At; if A is nonsingular, then At = A ~ I. Es-
sentially three theorems, due to Penrose (1955) are needed in this
paper. They are given here for convenience.

Theorem A-I

The four Eqs. (A-I)-(A-4) have a unique solution At for any
given A.

Theorem A-2

A necessary and sufficient condition for the equation A X B = C
to have a solution is

AAtCBt B=C

in which case the general solution is

X = At C Bt + Y - At A Y BBt ,

where Y is arbitrary.

Theorem A-3

BAt is the unique best approximate solution of the equation
XA=B.

According to Penrose Xo is the best approximate solution of

G = f (X) if for all X either

Ilf(X)-GII>llf(Xo)-GII or

Ilf(X)-GII = Ilf(Xo)-GIl and IIXII~ IIXoll,

where IIAII= trace (A* A).
It is straightforward to check that At B is the solution of the

normal equation associated to the optimal (least square) solution
of X A = B (see Kohonen et al., 1973).

The following relations are also useful

Att = A, (A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-tO)

(A-II)

(A-12)

(A-B)

(A-14)

(A-IS)

At*=A*t,

(AA)t = AtAt,

(u A vjt = V* At U* if U, V unitary,

A*=A*AAt,

At=A*AhAt,

At =(A* A)t A*,

(A* A)t = At Ah,

(AtA)t=AtA,

(AA*)t=AhAt,

At=A*(AA*)t.

Relations (A-5)-(A-12) are given by Penrose as consequences
of the definitions. (A-13) and (A-14) can be easily verified by sub-
stituting the right hand side into the corresponding definitions of the
generalized inverse, since the latter is always unique. (A-15) is
obtained from (A-tO)and (A-14).Relations (A-8)and (A-I I) provide
a method of calculating the generalized inverse of a matrix A
since A* A, being hermitian, can be reduced to diagonal form by a
unitary transformation. Thus . .

A* A = U D U* with D = diag(dl ...d.) and

At =(A* A)t A* = UDt U* A* with Dt =diag(dl...d~).
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