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THE VOLTERRA REPRESENTATION AND THE
WIENER EXPANSION: VALIDITY AND PITFALLS*

G. PALM anD T. POGGIOY

Abstract. Volterra and Wiener series provide a general representation for a wide class .of
nonlinear systems. In this paper we derive rigorous results concerning

(a) the conditions under which a nonlinear functional admits a Volterra-like integral
_representation,

(b) the class of systems that admit a Wiener representation and the meaning of such a
representation,

(¢) some sufficient conditions providing a connection between the Volterra-like and the Wiener
representations, .

(d) the mathematical validity of the method of Lee and Schetzen for identifying a nonlinea
system.

1. Introduction. Representation and experimental identification of the
input-output behavior of a “system” is one of the basic problems in the neurosci-
ences. Methods of linear system theory have been used extensively in the past to
study biological systems. Although they are not useful in obtaining information
about the structure and the mechanisms of a biological “black-box”, they provide
explicit representations for the functional properties of a system and experimental
identification techniques, typically based on the use of sinusoidal test stimuli.
Despite many failures, linear-system theory was successfully used to obtain (not
many!) interesting contributions to neurophysiology. An outstanding example is
represented by the analysis of the lateral inhibition network in the eye of Limulus
[28].

Biological systems, however, are rarely linear, even for “small” inputs.
Nonlinearities are often essential, especially in nervous subsystems that solve
information processing problems. In recent years, linear-system theory has been
extended to encompass a large class of nonlinear systems through the introduction
of functional polynomial series representations. Volterra theory [32] can be
regarded as a forerunner of the modern functional approach. Wiener’s work [33]
stimulated interest in functional series representations especially as a tool for
identifying nonlinear biological systems. Brownian motion test inputs play the
same role in Wiener’s theory as sinusoidal test signals in linear-system theory. The
basis of the method is that Brownian motion inputs “fill”’ the neighborhood of
every possible input signal with a nonzero probability and therefore test efficiently
the input space (see Appendix B).

L. Stark [31] applied the Wiener method and Katzenelson and Gould [12] a
variation of it, to characterize the pupillary control system. A modification of the
Wiener method, proposed by Lee and Schetzen [14], has recently led (together
with the availability of cheap computing power) to an outburst of applications.
Marmarelis [18], Marmarelis and Naka [19], [20], Naka et al. [24], McCann [21],
Krausz and Friesen [13], Fishman [8], Lipson [15], von Seelen [30] applied the
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Lee-Schetzen or related techniques to a variety of biological systems. At the same
time—and independently from Wiener’s approach—Volterra-like series have
been widely used to represent the input-output relations of nonlinear systems in
the areas of communication (Bedrosian and Rice [3], Brilliant [5], Zames [34],
Barrett [2], Bussgang [6]) and neuroscience (Poggio and Torre [27]).

However, several of these attempts, especially concerning white-noise sys-
tem identification, have been limited by the lack of a satisfactory mathematical
treatment. In particular, questions about range of validity and connections of the
two functional representations have been left essentially unanswered. Further-
more, confusions in the literature have occasionally obscured the mathematical
foundations of these functional approaches. The purpose of this paper is to
attempt a mathematical clarification of some of these problems. A forthcoming
note will discuss on a more general level advantages and disadvantages of these
identification methods for an understanding of nervous systems.

In this paper we will try to answer the following questions:

1. Which class of nonlinear systems (mappings) admits a Volterra-like
integral series representation and for which class of input functions?

2. Which class of nonlinear systems admits a Wiener representation? And in
which sense is this a valid representation of a system? :

3. What is the connection between the two representations?

4. Can the white-noise identification method of Lee and Schetzen [14] be
rigorously justified?

Practical implications of these problems and of their solutions will. be
discussed later. We will not deal here with probabilistic questions concerning
Wiener’s theory [33]. A recent account of some of the problems involved has been
given by McKean [23]. Extensions of the theorems of this paper to more general
stochastic inputs than Brownian motion (see footnote 4) will be presented
elsewhere [25]. :

The organization of the paper is as follows. In § 2 we introduce the functional
model of a nonlinear system. Section 3 deals with the Taylor series expansion of a
functional and with the existence of integral (“Volterra-like”) representations.
The Wiener theory is introduced in § 4, and § 5 presents a few heuristic remarks
about it. Convergence and validity of the Wiener series are clarified through a few
theorems (§ 6). Section 7 discusses the Lee and Schetzen identification method
and a new alternative identification method. Section 8 is devoted to an interpreta-
tion of our results concerning practical applications.

We shall use the following notation concerning function spaces (compare
Gel’fand and Vilenkin [10], Schwartz [29]):

C=C(0, 1]) denotes the Banach space of all real-valued continuous func-
tions on the closed real interval [0, 1] with the norm ||f]: =sup {| /()| : € [0, 1]}.

Co = Co([0, 1]) denotes the closed subspace of C([0, 1]), containing all func-
tions which vanish at 0.

L?=L*([0, 1]) denotes the Banach space of all (equivalence classes modulo
null functions of) square integrable, real-valued functions on the real interval
[0, 1] with norm ||f]| := (J 2(r) d1)"/*. More generally, if (X, Z, p) is a probability
space, we denote by L*(X, p) the space of all real-valued functions on X, square
integrable with respect to p, i.e. |f] = (J f*(x) dp(x))/? <0,
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D([0, 1]*) denotes the space of all real-valued infinitely differentiable func-
tions on the subinterval [0, 1]" of R", vanishing on the boundary of the interval
[0, 17

D'([0, 171") denotes the space of all continuous linear functionals on
D(0, 171*), where the topology of D([0, 1]") is determined by the seminorms

pe(f) =sup{|fXW)|:te[0, 11"} (k=0,1,2,- ).

In general, E=E([0,1]) denotes any topological vector space containing
D([0, 1]) as a dense subspace, such that the usual topology on D([0, 1]) is finer
than the topology induced by E. Examples are L and D'

The following inclusions hold:

D([0, 1)) = Co([0, 1D = C([0, 1) = L*([0, 1) = D'([0, 1.

2. The functional representation. The functional approach characterizes a
given system S as a mapping or operator between two function spaces, the
elements of which represent input and output signals. The mapping associates to
each input signal a corresponding output signal (see Fig. 1). This paper is confined
to the class of time- (or space-) invariant mappings with a finite memory. In this
case the output value y(¢) at time ¢ is given by a real-valued functional § of the
history up to ¢ of the input variable x

2.1) y(6)=5{x"}

Here x‘ is a “restricted” function x‘: [0, 1] R with the property that x'(s) equals
the values of x at time ¢t—s

2.2) x(s)=x(t—s), 0=s<1,

where the characteristic memory of the system is normalized to 1 and x is the input
function. Thus, for any given time ¢ the output y(#) is a functional of x" and
because of the time invariance this functional is the same for all . Therefore, a
time invariant system can be completely characterized by a functional

(2.3) S:E(0,1)->R,

where E denotes some vector space of real-valued “functions” on [0, 1]. A system
operating on complex valued inputs will be characterized by a functional
S:Ec([0,1])~»C.

xt—— § F——yt)

FIG. 1. Redrawn from [16]
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3. Functional Taylor series and integral representations. Physical systems
often have a characteristic smoothness property. Systems which do not respond
critically to certain changes in input show a smooth dependence of the output on
the input. This notion of smoothness can be mathematized by assuming that the
functional S:E([0,1])-> R representing the system is N+ 1 times Fréchet
differentiable (and that E is a Banach space). In this case

N
(3.1) Sx=Y Kx+O(x|"") forsufficiently small ]I,
n=0
where K,, are bounded, homogeneous polynomial functionals of degree n.'
In this section, we assume that §: E([0, 1])~> R can be represented as

(3.2) Sx= Y K,x forsufficiently “small”x,

n=0
where E is any suitable space of input functions and K, is a bounded homoge-
neous functional of degree n.

A natural question is whether the various terms K, of (3.2) can be written as
Volterra-like integrals. Balakrishnan [1] and others have maintained that for
E = L*([0, 1]) a representation like (3.5) is possible with k, e L*([0, 1]"), through
an extension (by induction!) of the familiar Riesz theorem for linear functionals.
This statement is incorrect” as a simple counterexample shows: '

1
(3.3) Kyix> j (x(s))*ds cannotbe expressed that way.
\ )

However, the use of distributions—namely Dirac’s §-function—allows one to
write the functional K,x as

(3.4) Kox = -” 8(s—r)x(s)x(r) dsdr

This is a special example of the following general result.

TueoreMm 1. Let K, : E(0, 11> R be a bounded homogeneous polynomial
functional of degree n on a topological vector space E containing D([0,1]) as a
dense subspace’, such that the usual topology on D is finer than the topology induced
by E. Then, for every x € E, K,x can be written in terms of a symbolic integral

1

(35) Knx =j e J‘ kn(tm T tn)x(tl) e x(tn) dtl e dtm

where the kernel k, is in D'([0, 1]7).

"In particular it is well known (e.g. Hille and Phillips, [11, pp. 112, 769]) that a Fréchet-
differentiable functional §: E<([0, 1])» C (where Ec is a complex Banach space) is analytic and has a
Taylor expansion Sx =J,,-0 K,,x which converges uniformly in a neighborhood of 0.

2 B. Coleman mentioned this point to one of us (T.P.).

31n Theorem 1 the restriction to the interval [0, 1] is not essential: it holds true for topological
vector spaces F containing D(R) or $(R) as a dense subspace. In this sense Theorem 1 holds for systems
with arbitrary memory and anticipation. However, in the following sections the restriction to the finite
memory case seems to be important. ‘
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Proof. Since the functional K, occurring in (3.2) can be restricted to the
subspace D([0, 1]) of E([0, 1]) (and being continuous on E([0, 1]) is also continu-
ous on D([0, 1])), it has the form (3.5) (Gel’fand and Vilenkin [10, Vol. IV, Thm.
5', p. 20]). In other words it can be represented by an element &, of D'([0, 1]*).
This symbolic integral representation, which at first only makes sense for input
functions x € D([0, 1]), can be extended in a nonambiguous way to input functions
x € E([0, 1]), since the functionals K|, are continuous in the E sense and Disdense
in E.

An integral representation like (3.5) is called a symbolic integral representa-
tion (see Appendix A), because eventually the k, are distributions. Let us now
consider the special case E([0, 1])=L>([0, 1]). Since the functionals K, are
bounded and continuous in the L* norm it can be shown that the “kernels” k,, are
the derivatives of some functions (see Gel’fand and Vilenkin[10, Vol. IV, p. 16]).
Consequently, an alternative representation for the functionals K, is given by a
Stieltjes integral representation

3.6) Knx=I "'Ikn(tl, ey t) dx(ty) - dx(t),

0
where the “kernels” k, are L? functions. Equations (3.6) and (3.5) are in fact
equivalent since for x € D equation (3.5) can be derived from (3.6) through partial
integration:

K.x = ... .kn(tl,---,tn) dx(ty) - - - dx(t,)
R
3.7 = J : ] K, (t1, "+, t)X(t) dty - - - X(2,) dt,
[ [Tk x @) 2 d
J ) aty - -+ Bt

showing that the following relationship connects the symbolic kernels k, to the
Stieltjes kernels k, /

an

. n 7"'yn=—1n—_———krz ;"'ytn‘

(3.8) alts, 1 1) = (= 1"kl )

The Stieltjes representation, (3.6), equivalent to (3.5) for input functions x €
D([0, 1]), can also be extended in a unique way to input functions x € L*([0, 1)),
since D is dense in L 2. While (3.5) poses no difficulties, it is important to stress that
(3.6) could lead to some misinterpretations when k, and x are both differentiable
and continuous. Consider, for instance, the simple expression

1

(3.9 Kx =I ki(¢) dx(t) forx(r)=1 in[0,1];

a superficial interpretation would lead to
1

(3.10) Kix =k;(1)x(1)—k.(0)x(0)— J:) ky(£)x(¢) dt=0.
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However, if the integral in (3.9) is interpreted as an extension from B to L’ an
approximation of x () = 1 through a sequence of functions in D leads to the limit

(3.11) Kix =k, (0)—ky(1).
This may also be seen by interpreting x(1)=1 on [0, 1] as @(r)—©(t—1)

1 fort>0
<®(”’{o for z<0)'

Kix= I kl(lf) dx(t)

(3.12) =J'k1(tj[a(t)—a(t~1)] dt

=k (0) =k (1).

In summary, we have shown that every functional S: E([0, 1]) > R, which can be
written as a “Taylor series” like equation (3.2), has a “Volterra-like” integral
representation

o ol
(3.13) Sx = ZOJ ka(ty, -, t)x(t) - x(t,) dty - - - dt,,
n=0Jo

with k, e D'([0, 1T"),

- which we call symbolic integral Taylor expansion. One can also write

© 1
(314) Sx = Z J‘ kn(tly Ty tn) dx(tl) e dx(tn),
0

n=0
which we will refer to as Stieltjes integral Taylor expansion.

4. The Wiener representation of nonlinear systems. Wiener [33] introduced
a canonical expansion of a nonlinear functional of the Brownian motion into a
series of mutually orthonormal polynomial functionals. One of the main interests
in Wiener’s work lies in the possibility of physically measuring the various terms of
the Wiener series for a nonlinear system. Thus, a complete characterization of
nonlinear systems through input-output experiments should be possible, in
analogy with harmonic input methods for linear systems. In this section we will
discuss the basic concepts of Wiener’s theory, its relationships with the Taylor
series expansion outlined in the previous paragraphs, and convergence problems
associated to the Wiener representation.

The Wiener development of a nonlinear functional is somewhat analogous to
the Fourier theory as the following theorem® shows.

THEOREM 2. (Compare Cameron and Martin [7] and Wiener [33].) Let x(z)

(¢€[0, 1]) be a Brownian motion on [0, 1] (with x(0)=0). It is known that x(t) is

(with probability 1) continuous as a function of t; therefore the Brownian motion is
determined by a probablltty measure w—called Wiener measure—on Co([0, 1]).
Then the space L*(Co([0, 1]), w) contains a complete orthonormal set of Wiener

*The theorem can be extended to a very large class of stochastic inputs, containing Brownian
motion and other continuous as well as discrete time processes This and related results will be
published elsewhere [25].
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functionals H,, which are polynomials of degree n, i.e.
n
(4-1) an = Z Gnki9
i=0
where. G, is homogeneous of degree i (i =n) and in fact

42) Gur=[ [ guatrr - 1) der) - dst)

0
with g.. € L*([0, 11).
Thus a functional S € L*(Co, w) can be expanded in the Wiener series .

e ]

(S, an)an = Z Z (53 an)Gnki:

0 nk=0i=0

(4.3) - s=

n,

o8

where (S, H,.) = _fo - Hx dw(x) represents the inner product in L*(Cy, w) and
the order of summation on the indices # and k is immaterial. Formal rearrange-
ments of the summation indices provide various polynomial functionals which
have appeared in the literature. For instance, the functionals H,

(4.4) H,=Y Gu=% X (S Hu)Gu

i=Q i=0k=0
correspond to the orthogonal functionals used, with a different notation, by Lee
and Schetzen [14] and Marmarelis and Naka [20] among others. Exhaustive
definitions and correspondences between the different notations are given in
Appendix A. The formal connection of the Taylor functionals K, introduced in
(3.2), with the elementary functionals G,; is given by

D18

(4.5) . K=3

i k

(S'a an)Gnki~

0

1]

At this point, the right-hand side of (4.5) is only a formal series. Later we will show
under which conditions (4.5) makes sense.

The Stieltjes representation for the homogeneous functionals G, (4.2), can
be alternatively rewritten-(see Gel’fand and Vilenkin [10, Vol. IV, Chap. III]) in
terms of the generalized stochastic process x(¢), i.e. “white noise” (x(¢) is
Brownian motion, x(z) € Cy([0, 1]), £(¢) e D'([0, 1)), as

) 1 .

(4.6) Guox = gualrs, 7))+ Elr) - d,
0

or as

i .

(4.7) Goix =J Guki (71, ++, 1)x(71) - - x(7) dry - - dry
0

where

4.8) 1T gt

. gnkl 871 . 61',~ gnkl 1 s 1 7v
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showing that the functionals G, also have a symbolic integral representation in
terms of the symbolic kernels g..;, which are derivatives (in a distributionary
sense) of L>-functions as the k; in § 3.

Wiener [33] has discussed practical methods to measure the coefficients
(S, H,.). However, we are faced with three difficulties concerning the Wiener
representation.

(a) The first problem concerns the convergence of the sum S=
Y k=0 (S, Hy)H,. According to Theorem 2, the convergence is in the L*(Co, w)
sense, that is

Therefore, the number Y« —o (S, H,x)H,.x is only determined for almost every
realization of the Brownian notion. Moreover, the sum Y, x~o (S, H, ) H,x may

. not converge for any particular realization x. Thus, the actual meaning of the
Wiener representation of a system for any single input function is not clear (see
question 2 in the Introduction).

(b) The convergence of the formal power series introduced earlier (see (4.3),
(4.4), (4.5)) also represents a problem which has to be investigated in detail. One
aspect of the question concerns the point-wise convergence of those series;
another aspect has to do with the possibility of rearranging the order of summa-
tion of the indices in the various series. For instance, while the order of summation
on the indices # and k in (4.3) can be interchanged, the index i presents a much
more difficult problem. We will discuss this point in the next section.

(c) The main interest in the Wiener representation is stimulated by its
application to actual physical systems. However, Brownian motion or “white
noise” inputs are not physically availablé. Physical devices can only give approxi-
mations, which are much “smoother””. What are the implications for the Wiener
representation? We will not touch the rather critical stochastic problems
associated with the practical presentation of Brownian motion or “white noise”
inputs. For a recent review of some of these problems compare McKean [23].

Section 6 provides a few theorems which deal with difficulties (a) and (b).
Before digressing into the mathematics, we briefly present some heuristic remarks
on these three points.

g 2
Z (S, an)H,,kx—Sx dW(X)—)O‘

nk=0

5. Remarks on the Wiener representation and its problems. Let us first
consider problem (c). If one approximates a realization x(¢) € Co([0, 1]) of the
Brownian motion (i.e. a continuous, not differentiable function) by some ““physi-
cal” function z(¢), it is necessary to require of the system S that Sz is “near” to Sx.
Therefore, the mapping S :Cy([0, 1])> R has to be continuous. In addition, if
approximated “white noise” inputs are considered, a necessary condition is that
even the mapping S : D'([0, 1]) > R must be continuous (the “white noise” realiza-
tions are in D'([0, 1])), which represents a much stronger requirement on the
system S. More generally: the larger the input spaces allowed, the stronger are the
conditions on the system. In fact, one of the basic disadvantages of the Wiener
representation is that the Wiener measure is not the natural measure for many
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applications: Brownian motion and white noise inputs cannot be generated
physically and their approximation presents deep problems.

We consider now the problem (a), raised in the previous section: what does
the L*(Co, w) convergence of the Wiener representation S =Y (S, Hu)Hoe
mean for a single input function x(¢) € Co([0, 1])? A standard measure-theoretic
interpretation runs as follows: it is known that the L*(Cy, w) convergence implies
the convergence in probability, that is for every ¢, 8 > 0 there is an integer m, such
that for p, g =m

(5.1) o] £ 6, H,,k)H,,kx—le>5}><e

nk=0
In other words, given any particular input x and two small numbers ¢, § >0, for
sufficiently large p, q we are sure that the error associated to the truncated (at p, q)
Wiener representation is less than §, with a “confidence level” of .

This heuristic interpretation shows that—at least in a statistical sense—the
Wiener representation is valid for single specific inputs. Moreover, the statistical
argument can be made precise under some additional assumptions. This will be
proven in Theorem 4.

We finally turn to problem (b) of the previous section, namely the order of
summation with respect to the different indices #, k, i. Clearly, in the orthogonal
expansion (equation (4.3))

S = z;c (Sa an)an (Zk (S’ an)2 < (D, an = ‘20 Gnki)

the summation with respect to n and k can be interchanged, the convergence
being in the L %(C,, w) sense. However, it is not clear under which conditions on
S =Y, i (S, Hyu)Gp. the summation with respect to k and i can be interchanged.
To settle the question whether

(52) Z Z (S an)Gnkt Z Z (S an)Gnku
k=0i=0 i=0 k=0

we have to show, that all the sums Yr-0(S, Hu)Guu (0=i=n) and
Yo o(S, Hy)H,. converge. The last sum converges in L*(Co, w). For
Y=o (S, an)Gnk,, we can consider the corresponding Stlelt]es-kernels
(@akn)k =012~ which are orthogonal in L 2(0,11"). Therefore Y,.,
(S, H,i)nin converges in L ([0, 1T*). As for the other sums a0 (S, Hu) G
(0=i=n—1): their convergence can in general not be assured. In the next section
rather strong conditions will be given, which imply the pointwise convergence of
all the sums occurring in (5.2). Furthermore, in Theorem 4 we will show that the
interchange of the order of summation with respect to all three indices is
immaterial.

6. Additional requirements for pointwise convergence. In this section we
will characterize some conditions under which the Wiener representation also
makes sense for any specific input. Moreover, the connection of the Wiener
representation with the Taylor (or “Volterra-like) expansion of § 2 will be
derived. The basic result is the following theorem.
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THEOREM 3. Let E be a topological (vector) space, containing Co([0, 1Nasa
dense subspace, such that the sup-norm topology of Cy is finer than the topology
induced by E. Consider a sequence of mappings S, : E > R, equicontinuous on some
neighborhood V < E of zero, and a mapping S : E - R, which is continuous on V.

If every S, belongs to L*Cy, w) and S, S in the L*(Cy, w)-norm, then
S,.x > Sx foreveryx e V.

Proof..Suppose for some xo€ V' S,xo does not converge to Sxo. Then there is
a & >0 and a subsequence (S,,) of (S,) such that |S,,xo— Sxo| > 38. Since (S,,,) are
equicontinuous we can find an open neighborhood U<V of x, such that
S, — Swexo| <6 for every k and [Sx —Sxo|<§; hence

(*) [S.x —Sx|>6 foreveryxeU.

Now U’ :== UNGCo([0, 1]) # @ is open in Co[0, 1], and therefore w(U’) # 0 (see
Appendix B). But on the other hand S, - S converges in the Wiener sense; hence
for every g, 8 > 0 there is m €N such that for every n =m

w(fx :|Syx —Sx||>8}) <e (see(5.1)).

If we call {x :|S.x —Sx|>8} = M,, this means w(M,)~>0. In (+) we have shown
that U’ < M,,, and therefore w(U’) =w(M,,)~ 0, contradicting w(U") # 0.

We translate Theorem 3 into the language of Theorem 2, using a Banach
space E in Theorem 4 and the space L*([0, 1])in Theorem 5.

THEOREM 4. Let E be a Banach space containing Co([0, 1]) as a dense
subspace, such that the sup-norm topology on Cy is finer than the topology induced
by E. Let S: E >R be a continuous functional and S € L*(Co, w). Consider the
following conditions on the functionals G, of the Wiener expansion

@ [, Y5lo (S, Hu) G| Sc7'd, for every ni, ki, i and some constant
d>0,

) Yo S o (S, Hul|Guiil = ¢ 7'd, for every i and some constant d >0,

(©) Gux =Yy o (S, Hu)Gux converges® for every x and 2., Gull = c’'d
for every ny, i and some d >0,

(d) Gux = Sny (S, Hy)Gx converges® for every x and T oGS d
for every i and some d > 0. :

Any of these conditions imply that.

() S o r o (S, Huy)Guex =Sx  holds  for x| <c. Moreover, if
K= Yo Yo (S, Hu)Gurix converges,

(ii) Yoo, Kix = Sx holds and is the Taylor expansion of 5 for x| <c (therefore S
is infinitely often Fréchet-differentiable).

Proof. (a)= (i). From Theorem 2 we know, that (i) holds in L*(Co, w). Now
we apply Theorem 3, to show the pointwise convergence (i) on

Vi={xeE:|x|<c}

5 Except for g,., the corresponding symbolic kernels g,; are not necessarily the Lee-Schetzen
kernels (see § 7 and discussion).
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We only have to verify the equicontinuity of the functionals
nlkl = Z Z z (S an)Gnkl

n=0k=0i=0

Let x, xoe V and s = sup {|x||, [lxol} <c.

IFnlk;x Fn‘klxol Z Z (S an)(Gnkxx Gnkixo)

OkOnz

nol keony i
= Z Z Z (S’ an)Gnki” i 3‘—1 : ”x _xO”

=tllk=0n=i
(Compare Hille and Phillips [11, p. 764])

=Y cdisTx—xol (by(@)

I e

i=1

(a)=> (ii). Now we know, that (i) holds, i.e. ka o (S Hy)Hux = Sx for =
lxll<c, and we assume that %, , (S, Hu) Guix = Kix converges, for some x € V.
Let ¢ >0, then we choose i, so large, that

c-d (k) e
() | e <5

and prove [¥;", Kx —Sx|<e:
Choose ny, k; so large, that

n ky e
Sx — H x| <————
¥ ngo k§0 W 2(i; +2)
and
n, k,; £
X — x| <— 0=si=iy).
sz ,,Z:.i kgo (59 an)Gnklx 2(11 + 2) ( l ll)
Then -

i ihon Ky
Z Kx - z Z (S’ an)Gnkix
i=0-

i=0n=i k=0

n

Kx— Z Z (S an)Gnktx

n=i k=0

ezl+1
2 1+2

=3
i=0




206 G. PALM AND T. POGGIO

_ and

k n n

li ’i Zl (S,an)Gnkix'—' Z i Zl (Sy an)Gnkix

i=0n=i k=0 i=0 n=i k=0

nyony o ky

Y X X (S HWGux

i=iy n=i k=0

o

=2,
.ed (e

Te-llVe

<3 cdlxl by @)

i=iy

ny ok
Z_ Z (Sa an)Gnkix

n=1 k=0

)'<E oy @)
Since

ny kg ng kg op
Z 2 anx:' Z Z z (Sa an)Gnkix

n=0 k=0 n=0k=0i=0
ngony kg

= Z Z Z (Sa an)Gnkix
i=0n=ik=0

we can combine the obtained inequalities to

o

iy iy ky
Z K,‘X"Sx = Z Kix_ Z Z Z (Ss an)Gnkix
i=0 i=0 i=0n=ik=0
iy onyg ky » ny  ky
+ Z Z Z (53 an)Gnlcix - Z Z anx
i=0n=i k=0 n=0 k=0
ny o ky :
+| Y Y Hux—5x
n=0k=0

e i1+l ¢ € 1
bt

242 2 2 h+2 ¢

We still have to prove, that (ii) is the Taylor-expansion of § for lxl<c,and §
is infinitely often Fréchet-differentiable. But these are easy consequences of [11,
Thm. 3.18.1] if we can check, the “locally uniform boundedness™ of the function-
als (TiL, K));,en: For every ¢'<c inthe ball B={xeE x| = ¢’} we have

Y Ka|= Y |Kal< Y ¢ dlx]f
i=0 i=0 i=0

(by (a) and the definition of K;)
dc dc

Tkl ="

(c)=>(i). The proof runs along the lines of (a)=>(i), if one considers the
functionals F,, == Yoty Vo G

(c)=(ii). Again the proof is an easier version of (a)=>(ii); (b)=>(a) and
(d)= (c) are consequences of the triangle inequality.
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In Theorem 4 the convergence properties are not changed by changes in any
finite number of the functionals. G,,;. We will make use of this fact in the following
theorem, where stronger assumptions on the symbolic kernels g,; actually imply
that they are in L*([0, 17), which is not always the case (see for instance, (3.4)).
However, the conditions required in Theorem 5 meet the demands of many
applications (and, of course, the case of polynomial systems).

TueoreMm 5. Let S:L*([0,1])»R be a continuous functional and S e
L%(C,, w). Consider the following conditions on the kernels gu.; occurring in the
symbolic integral Wiener representation: There is a constant d >0 and integers iy,
no, ko such that

(@) X5 (S, Hk)gukill2 = ¢ ~'d for every i > o, ni>no, k1> ko,

(b) Z?:fo:o (S, an)“gnkillz =c"'d for every i > ip, )

(©) gni = Ypeo (S, Hux)8nki cOnvVErges in L¥([0, 17) and |¥r1, gl = c7'd for
every ny > Ro, i > o, ‘ '

(d) gui = Yneo (S, Hur)gnii cOnverges in L2([0,171) and ¥, gnll. = ¢ ~'d for
every i >y, : ‘

(&) ki=Y,k (S, Hou)8nii converges in L*([0, 11) and |kill,=c'd for every
i>i. -

Each of these conditions imply that

() Y=o Limo (S, Hui) Giix = Sx holds for x| <c.
Moreover, if T Y n—o (S, Hu) Gt = Kix converges,

(i) Y o Kix = Sx holds and is the Taylor expansion of S for x| <c (here the
kernels g.;, k; correspond to the functionals Gy, K)).

Proof. For any kernel keL? ([0,1]) we denote the L?-norm by |k|,=
(- Moy, -, 6 dty - -+ dt,)"/? and get

U . J k(ty, -, t)x(ty) - - x(&) dr - dti‘

.[ J. Jk(’l’ coe, t)x(t) dh

|
é.[ . H(,[lk(t‘ o)l dtl)l‘nllxll]x(tz) coex(t)dty e dt

= el -

<ol -
<helr([ - e o - ) = el

Therefore e.g.

IIA

x(ty) - x(t) dty - < - dt;

[([ete - 07 ae) “ste s e+ ety s
I

[(”Ik(“ e n)fdn d52>1/2||x|!] x(t3) o x(t)dts - db,

ny ky
Z Z (S, Hui)gnii

n=i k=0

<

ny kg
Z Z (Saan)Gnki

n=i k=0

showing that for E = L*([0, 1]) the conditions (a), (b), (c), (d) of Theorem S imply
the corresponding conditions of Theorem 4.

)
2
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in this case the modified method provides the correct system identification:

oo = E{y (1)}
= E{ J[l +(c=7)0(c -1+ (r—0)O(r— o)k (0)x"(7) drda}
(7.4) = J[l +(o—7)0(0—1)+(r—a)O(r—)E{x (0)x'(7)} dr do

= J'[l +(e=1)8(c—7)+(r—0)O(r=0)]6 (0 —7) dodr = 1;

g1 = E{y(0)x'(s)}

(7.5) =E{J [1+(c-7)8(@—7)+(r—0a)]
- x(0)x (r) do dr)é'(s)}
= O;
(7.6) g210=0;
2g (r, 5)= E_{y(t)i'(r)i'(S)}
(7.7a) = {I[l +(oc—7)0(c—7)+(r—0)B(r—0)] |

$ 24 (0)¥'(7) dodr £(r)E'(s)
= [[1+e-nBe =)+ (r-0)0(r=0)]
- E{x'(0)x" ()X (r)x'(s)} dodr |
= f [1+(e~)8(c—1)8(r = )][8(c —~)8(r —5)+ (T ~r)d(z =)

+8(c—5)8(r—r)] dodr
=8(r—8)+1+(r—5)0Fr—s)+(s—r)O(s—r)+1+(s—r)O(s—r)
+(r—s)0(r—s)
(7.76)  =2{1+(r—s)O(r—s)+(s—r)O(s —r)}+8(r—s),

where the § term is not to be taken into account (Lee and Schetzen, [14]).
Practically this requires the other term (i.e. g22) to be sufficiently smooth in a
neighborhood of the diagonal. Furthermore we obtain

(78) 821 E0,

(79) 820~ —j gzz(r, ") d" = - 1.

The main difficulty of the Lee-Schetzen method, which cannot be overcome by a
modified prescription, consists of the evaluation of the “‘diagonal integrals,” like
g20 in (7.9). The crosscorrelation method of Lee-Schetzen leads in fact to delta
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functions along the “diagonals,” for all kernels of degree two or higher (compare
(7.7b)). Therefore, the experimental errors in evaluating for instance g,,(r, 7) may
be large, leading to comparable large errors in the corresponding “diagonal
integral” and finally in the second order Wiener functional. This practical
difficulty has also a mathematical counterpart, namely question (b) of § 4 (see also
the end of § 5 and the footnote 5). The ‘“diagonal integrals” are, in general,
ill-defined, since the kernels g,, belong to L*([0, 1]*) and their “diagonals’ are
sets of zero measure. As a matter of fact, Wiener noticed this problem (Wiener
[33,p. 36]) which is circumvented by his method (Theorem 2). Let us illustrate this
difficulty with a slight modification of our previous example. Assume that the
system is

(7.10) y(@r)=Sx"'= IJ [0(c—7)+0O(r—0a)] dx' (o) dx'(r)+J 20(r—r) dr.

It is not difficult to show that § € L*(Cy([0, 1]), w) is well defined, since ®(c — 1) €
L*([0,1T%) (compare Wiener, [33, p. 36]). However, the last integral does not
make sense. As a consequence, even the modified Lee-Schetzen method, which
requires the evaluation of this integral, fails here.

8. Cenclusions. We have attempted to find the connections between some
versions of the Volterra and the Wiener representation for nonlinear systems. A
comparison of the various approaches with the original work of Wiener has
revealed that different kernels were used without a discriminating terminology.
Therefore we have introduced the notions of “symbolic” and *‘Stieltjes” kernels
(see Appendix A). We believe that the language introduced in Appendix A is very
helpful in clarifying the relations between different notations occurring in this
field.

Throughout this paper two types of conditions are always required for the
validity of a specific system representation: one set of conditions concerns the
input space, the other set is on the mapping (or system) itself. These two types of
requirements are strictly connected: heuristically, the larger the input space, the
smaller the mapping space which is allowed. This remark is clearly of considerable
importance especially for identification problems, where the choice of the test
inputs not only determines the input space but also restricts the class of systems for
which the identification is valid. For instance, a specific input space E in Theorem
4 determines a corresponding continuity requirement on the mapping. The linear
symbolic kernel of the Taylor representation is®

(i) anything in D' if the mapping is continuous for inputs x € D([0, 1]),

(i) any finite measure, except the Dirac §(r), if the mapping is continuous
for inputs x € Co([0, 1)),

(iii) any function in L?*([0,1]) if the mapping is continuous for inputs
xeL*([0,1)),

(iv) any function in D([0, 1]) if the mapping is continuous for inputs x €
D'([0, 1]).

6 The Wiener representation is valid for linear systems, iff the Stieltjes kernel g;; is in L*([0, 1),
i.e. the symbolic kernel g, is the derivative of a function in L?. The Lee-Schetzen method for linear
systems requires the symbolic kernel g;; to be in L*([0, 1]).
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For the nonlinear kernels of second or higher order it is not easy to establish
similar correspondences. In particular (iii), derived from the Riesz theorem, does
not hold, in general, for nonlinear kernels (see § 3). However, (i) holds for all
kernels, linear and nonlinear (compare Theorem 1).

We summarize now our main results in terms of the four problems outlined in
the Introduction.

The first question about the class of systems admitting an integral “Volterra-

like” representation has been completely answered in § 3 (see Theorem 1). An

alternative answer is provided by Theorems 4, 5, which require different condi-
tions on the system than Theorem 1. The class of Volterra-like representable
systems is only restricted by a kind of smoothness conditions.
~ The second problem was extensively dealt with in §8 4, 5, 6. Theorem 3 is the

fundamental result, which insures that the L?*(Co, w) convergence of the Wiener
representation implies also its convergence for every single input. Theorems 4, 5 give
simpler conditions for the pointwise validity of the Wiener representation.

Moreover, they provide the answer to the third question: under the same
conditions, the Taylor and the Wiener representations can be obtained from each
other by exchanging the order of summations (see also Appendix A).

However, it is clear that the conditions of Theorems 4 and 5 cannot be

‘checked by experimental measurements to validate the system identification.

Section 7 was finally devoted to our fourth and last question concerning the
identification method of Lee and Schetzen. Some confusion has occurred in the
literature between Brownian motion and white noise and correspondingly
between the mathematical justifications of the Wiener and of the Lee-Schetzen
method. Our approach makes clear that this situation has arisen essentially
because of confusion between Stieltjes and symbolic kernels. We were able to
show,in § 7, that the validity of the original Lee—Schetzen method is restricted to a
smaller class of systems than the “Wiener” class, namely to the systems S whose
“derivative” S’ belongs to the “ Wiener” class. This restriction can be removed by a
modification, illustrated in Fig. 4, of the original method. However, both prescrip-
tions present, in general, a rather deep mathematical difficulty concerning the
“diagonal integral” appearing in the determination of the nonleading kernels g
(0i=n-—1). Practical consequences of this difficulty are the impossibility to
measure exactly the nonlinear kernels along ‘‘diagonals” (due to the presence of
delta pulses on these “diagonals”) and the possible- nonexistence of such
“diagonal” integrals (compare Wiener [33, p. 36]).” Of course, there are systems,
sufficiently “well-behaved”, for which the Lee-Schetzen method provides the
correct identification. Linear systems can be identified, as is well known, through
the Lee-Schetzen method. The basic reason is that g;0=0, i.e. no ““diagonal
integral” appears (Taylor and Wiener expansions coincide for linear systems).
Quadratic systems already present the difficulty of the “diagonal integral” g,o =
I g22(7, 7) dr. However, this difficulty can be circumvented, if one knows that
higher order Wiener functionals are identically zero. In this case, the following
relation holds identically: ggo—f g22(7, 7) d7 = Y,, where Y is the system output

7 An alternative method, proposed by French and Butz [9], which represents a translation in the
frequency domain of the Lee-Schetzen method, also has similar “diagonal” difficulties.
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for zero inputs (usually Y, = 0, since the system is not active). As a consequence it
is not necessary to evaluate the diagonal kernel, if Y, isknown. Interestingly, most
of the practical applications of the Lee-Schetzen method have been restricted to
quadratic systems (see for instance McCann and Marmarelis [22]). However, for
third or higher order systems, this problem of the Lee—Schetzen method cannot be
easily avoided.®

The Wiener method does not have the “diagonal integral” difficulty (and it is
valid for a larger class of systems); but it is computationally cumbersome. Other
identification methods, like multiple delta-pulses and multisinusoidal inputs, may
often be more convenient, if the system has a finite order. The harmonic input
method (Bedrosian and Rice [3]; Marchesini and Picci [17]) can be, for instance,
interesting for the identification of the symbolic Taylor kernels since the class of
allowed systems may be rather large (sinusoidal test functions are in D).

A promising approach of a different nature, which relies on the functional
and computational properties which can be associated to the various terms of a
Volterra-like representation and does not strictly require a measurement of the
kernels, has been recently developed and applied to some biological problems
(see the review by Poggio and Reichardt [26]).

Appendix A. Polynomial functionals. Let S be a functional on aspace E. An
. expression Sx = Yoo K.x where K, is a homogeneous polynomial functional of
degree n (and Kox is a constant), is called a “Taylor expansion” of S. An
expression Sx =Y. _o Yr- o Hu, where the functionals H,x = Yo Guix (G Of
degree i) are orthogonal in the Wiener sense (i.e. fH,,ka,,'k‘x dw(x) = pn * Skx’)
(see Theorem 2), is called a ““ Wiener expansion” of S.

If the functionals K; (respectively G,.;) of degree i can be expressed by
symbolic integrals, like

(3.5) K= [later ety -ty -

(k; belonging to D'([0, 11)), this is called a symbolic integral representation of K;
(respectively G,;). Similarly

oo

Sx =) J""Jki(tl"‘ti)x(tl)"'x(fi)dﬁ"'dti

i=0

is called a symbolic integral Taylor expansion, and

Sx=) X J T J Guii(ty - t)x(8r) = - x(t;) dty - - - db;
nki=0 |
is called a symbolic integral Wiener expansion.
" If the functionals K; (resp. G,) of degree i can be expressed by a Stieltjes
integral, like

(3.6) K[xzj'""l'ki(tl"'ti) dx(ty) -+ - dx(t;)

8 To our knowledge, a few attempts to measure third order kernels resulted in a decrease of
accuracy of the Wiener representation of the system ([18, p. 112]). The results of this paper suggest
that this may be due to fundamental difficulties of the Lee-Schetzen method rather than to
computational errors.



214 G. PALM AND T. POGGIO

(at least for x € D), this is called a Stieltjes-integral representation. Similarly

@©

Sx=% J"'jki(tl"'ti)dx(tl)’ -+ dx(t)

i=0
is called a Stieltjes integral Taylor expansion, and

Sx=}% i J Tt J‘ Cowi(ty -+ 1) dx(ty) - - dx(t)

nk i=0
is called a Stieltjes integral Wiener expansion.
Wiener functionals. The Wiener expansion of § is given by

(43) Sx = Z (S’ an)anx = Z Z (S’ an)Gnkix

nk=0 nk=0i=0
(G of degree i).
Therefore '
) Z,=0 G,,k, H,, are the orthogonal Wiener functionals,
D ¥ Ye-0 (S, Hy) G = K; are the Taylor functionals.
The method of Lee and Schetzen yields the homogeneous functionals
In G, = Zf=0 (S, H)G.: and therefore their expansion proceeds in
terms of the orthogonal functionals
(IV) H, =T G =Y~ Li~0 (S, Hue) Gk
The corresponding kernels are denoted by g, resp. g.. For instance, the
orthogonal functionals G, in the terminology of Lee and Schetzen correspond to
our H,; and the following formal correspondences exist between our g,; and Lee
and Schetzen’s notation:

8nn =y

810=0,

821=0, g20= I hy(71, 71) dry,

82=0, g30=0, gu(r)= J' hs(71, T2, T2) da.

Moreover, Wiener’s expansion of the Lee-Schetzen 4’s in Laguerre functions
corresponds to our “expansion” of the G,; as

[ o)
Gm’ = Z (S’ an)Gnki-
k=0
However, all these correspondences with the Lee-Schetzen functionals are
strictly formal, since it is in general not clear that our series Z;f:(‘, Goi = Gy
coincides with the corresponding Lee-Schetzen functionals.

Appendix B.

TueoRrEM. Every open set U = Co([0, 1]) contains a subset of positive Wiener
measure. _

Proof. Let x € U, then there is a ¢ >0, such that

B(x,c) ={yeCo:|x@t)—y@®)|<cVte[0, 1} = U.

Let £ >0, there is a ke N such that |¢t—¢|=1/k implies |x()—x(¢)|<e (x is
uniformly continuous, since [0, 1] is compact).
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Let I;=[(j—1)/k,j/k] (j=1,---,k); then U,'f=11,»=[0, 1]. It is known

that w({y : |y (t)| <2eVrel,}) >0. Now
[x(1/k)|=x(1/k)—x(0)|<e
and therefore
w({y :|y(t)|<2eVtel, and |y(1/k)—x(1/k)|<e/2})>0
(since |y(1/k)—x(1/k)|<e/2 implies |y(1/k)|<2¢). If we define
M; = {y:ly(0)~y((j = D/k)|<2eVt e I and |y (j/k) —x (/)| <e/2}

we have just shown w(M;)>0.

If y € Mj, then |y (j/k)—x(j/k)|<e/2 and therefore

) o= HER) o BB A <2

hence w(M;1|M)>0 (since |y((j+1)/k)—x((j+1)/k)|<e/2 implies
ly(j+1)/k) =y (j/ k)| <2¢).
Therefore (N1 M;)=w(M,) - [[=1 w(M;.1[M;)>0. But for y € Nj=; M;

we have # . . ' '
o)+ ) )| b5) -0

ly(6)—x (1| <
<2e +§+e <4e

forte[(j=1,---,k). If we now take ¢ =c/4, we thus find
Ny M;cB(x,c)sU and w(Nj<1 M;)>0.
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