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Background: The inferior temporal cortex (IT) of the
monkey has long been known to play an essential role in
visual object recognition. Damage to this area results in
severe deficits in perceptual learning and object recog-
nition, without significantly affecting basic visual capaci-
ties. Consistent with these ablation studies is the discovery
of IT neurons that respond to complex two-dimensional
visual patterns, or objects such as faces or body parts.
What is the role of these neurons in object recognition? Is
such a complex configurational selectivity specific to bio-
logically meaningful objects, or does it develop as a result
of extensive exposure to any objects whose identification
relies on subtle shape differences? If so, would IT neurons
respond selectively to recently learned views or features of
novel objects? The present study addresses this question
by using combined psychophysical and electrophysiologi-
cal experiments, in which monkeys learned to classify and
recognize computer-generated three-dimensional objects.
Results: A population of IT neurons was found that
responded selectively to views of previously unfamiliar
objects. The cells discharged maximally to one view of
an object, and their response declined gradually as the
object was rotated away from this preferred view. No
selective responses were ever encountered for views that
the animal systematically failed to recognize. Most neu-
rons also exhibited orientation-dependent responses during

view-plane rotations. Some neurons were found to be
tuned around two views of the same object, and a very
small number of cells responded in a view-invarant man-
ner. For the five different objects that were used exten-
sively during the training of the animals, and for which
behavioral performance became view-independent, mul-
tiple cells were found that were tuned around different
views of the same object. A number of view-selective units
showed response invariance for changes in the size of the
object or the position of its image within the parafovea.
Conclusion: Our results suggest that IT neurons can
develop a complex receptive field organization as a con-
sequence of extensive training in the discrimination and
recognition of objects. None of these objects had any
prior meaning for the animal, nor did they resemble any-
thing familiar in the monkey’s environment. Simple
geometric features did not appear to account for the
neurons’ selective responses. These findings support the
idea that a population of neurons — each tuned to a dif-
ferent object aspect, and each showing a certain degree
of invariance to image transformations — may, as an en-
semble, encode at least some types of complex three-
dimensional objects. In such a system, several neurons may
be active for any given vantage point, with a single unit
acting like a blurred template for a limited neighborhood
of a single view.
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Background

Object recognition can be thought of as the process of
matching the image of an object to its representation
stored in memory. Because different viewing, illumina-
tion and context conditions generate different retinal
images, understanding the nature of the stored represen-
tation and the process by which sensory input is normal-
ized is one of the greatest challenges in research on visual
object recognition. It is well known that familiar objects
are recognized regardless of viewing angle, scale or posi-
tion in the visual field. How is such perceptual object
constancy accomplished? Does the brain transform the
sensory or stored representation to discard the image
variability resulting from different viewing conditions,
or does generalization occur as a consequence of percep-
tual learning, that is, of being acquainted with different
instances of any given object?

Most theories which postulate that transformations of an
image representation precede matching assume either a

complete three-dimensional description of an object [1],
or a structural description of the image that specifies
the relationships among viewpoint-invariant volumetric
primitives [2,3]. In such theories, the locations are speci-
fied in a coordinate system defined by the viewed object.
In contrast, theories assuming perceptual learning are
viewer-centered, postulating that three-dimensional ob-
jects are modelled as a set of familiar two-dimensional
views, or aspects, and that recognition consists of
matching image features against the views held in this set.

‘Whereas object-centered theories correctly predict the
view-independent recognition of familiar objects [3],
they fail to account for performance in recognition tasks
with certain types of novel objects [4-8]. Viewer-cen-
tered models, on the other hand, which can account for
the performance of human subjects in any recognition
task, are usually considered implausible because of the
amount of memory a system would require to store all
discriminable views of many objects. These objections,
however, have recently been challenged by computer
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simulations showing that a simple artificial network
can, in principle, recognize three-dimensional objects by
interpolating between a small number of stored views or
templates [9-12].

Mathematically, the network is designed to solve an
approximation problem in a high-dimensional space [13].
Learning to recognize an object is assumed to be equiva-
lent to finding a surface in this space that provides the
best fit to a set of training data corresponding to the
object’s familiar views. A view is considered as a vector,
the elements of which can be any image features, includ-
ing non-geometrical ones, such as color or texture. In the
simplest case, one hidden-layer unit is assumed to store
each familiar view. When the network is presented with a
novel view, each unit calculates the euclidean distance of
the input vector from its learned view, and applies this
distance to a Gaussian function. Thus, the activity of the
unit is maximal when the test view is the unit’s own
template, and it declines gradually as the rotation angle
between the test view and the template increases. The
activity of the entire network is conceived of as the
weighted sum of each unit’s output. A recognition system
relying on such an architecture has a strongly view-
dependent performance when presented with a novel
object, but it achieves object constancy by familiarizing
itself with a small number of object views [9].

In support of this model are experiments showing that
human recognition performance for certain object classes
can indeed be well predicted by assuming that subjects
interpolate between familiar object views [7,8]. Similar
results were obtained from animal psychophysical experi-
ments [12], which showed that monkeys trained with
one view of a novel object perform best with this view,
and progressively worse for views increasing in distance
from the learned view. Familiarity with two views of an
object allows the interpolation of recognition between
the views if they are close enough together, say 90° apart,
but results in two independent regions of generalization
if they are far (160° say) apart. Training with three to five
views is usually sufficient for the animal to achieve view-
invariant performance around one axis.

A recognition architecture that could underlie such per-
formance might rely on small-scale networks with units
that are broadly tuned to views or features of a learned
object. Neurons of the monkey inferior temporal cortex
(IT) that respond to complex two-dimensional patterns,
including face or hand views {14—18], have indeed been
reported by different researchers [19-22]. Such cells dis-
charge more strongly to complex patterns than to any
simple stimulus, and are found even in the earliest stages
of ontogeny of the primate [23]. A detailed investigation
of the cells exhibiting high selectivity for faces has
revealed several different types or classes of neurons in
the superior temporal sulcus, each broadly tuned to one
view of the head, for example full face or profile [24].
Similarly, neurons have been reported that respond
selectively to static or dynamic information about the

body, or body parts, some of which were dependent on
the observer’s vantage point {25,26]. Is such a configura-
tional selectivity specific only for faces or body parts, or
can it be generated for any novel object as a result of
extensive training?

Clinical observations of brain-damaged patients have
shown that the recognition of living things can be selec-
tively impaired [27]. Thus, it is conceivable that the per-
ception of biological forms is mediated by specialized
neural populations. If this is the case, then the complex-
pattern selectivity — for faces, body parts and so on —
reported in the above studies may be unique to the rep-
resentation of objects in the class of ‘living things’, with
different encoding mechanisms being responsible for the
recognition of other objects. Alternatively, a system based
on neurons selective for complex configurations may
be one mechanism for encoding any object that cannot
undergo much useful decomposition in the process of
recognition.

The identification of different types of object cannot
always rely on part decomposition. For example, we are
unlikely to recognize individual faces simply by detecting
the presence of two eyes, a nose and a mouth, as each
individual is likely to have the same components in ap-
proximately the same positions. It is a holistic and/or a
metric representation that probably underlies recognition
of the face of an individual. The same reasoning may
apply to the recognition of individual objects of other
classes, particularly artificial objects composed of similar
parts. Thus, the question arises: if monkeys are exten-
sively trained to identify novel three-dimensional objects
of a class whose members show a great deal of structural
similarity, then would one find neurons in the brain that
respond selectively to particular views of such objects?

We have examined this possibility by using two classes of
novel, computer-generated stimuli: Gouraud-shaded wire-
like .and amoeboid objects [7,8,12]. The monkeys were
trained in a matching task, generalized across translation,
scaling and orientation changes. Within an object class,
the target—distractor similarity varied between one ex-
treme, where distractors were generated by randomly
selecting shape parameters — such as the positions of
vertices or protrusions, the sharpness of angles between
segments or the moment of inertia of the objects — and
the other, where distractors were generated by adding
different degrees of noise to the parameters of the target
object. A variety of other digitized two- or three-dimen-
sional patterns, such as geometric objects, scenes or
body-parts, were also used as controls in the physiological
experiments.

Results
View selectivity

Single-unit recording was performed in the upper bank
of the anterior medial temporal sulcus (AMTS) using
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standard techniques (see Materials and methods). A total
of 970 IT cells were recorded from two monkeys per-
forming either a simple fixation task (Fig. 1a) or the
recognition task described below.

An observation period began with the presentation of a
small yellow fixation spot (Fig. 1b). Successful fixation
was followed by the ‘learning phase’, during which the
target was presented from one viewpoint for 2—4 sec-
onds. This view of the target, the so-called ‘training
view’, was presented in oscillatory motion (at 0.67 Hz)
* 15° around a fixed axis to provide the subject with
adequate three-dimensional structure information.

The learning phase was followed by a short fixation
period, after which the ‘testing phase’ started. A testing
phase consisted of up to 10 sequential trials, during each
of which the test stimulus —— a static view of either the
target or a distractor — was presented. Thirty target
views spaced 12° apart and 60-120 different distractor
objects were tested in a given session. The duration of
stimulus presentation was 500-800 milliseconds (msec),
and the monkeys were given 1500 msec to respond by
pressing one of two levers: the right lever upon presenta-
tion of a target view and the left upon presentation of a
distractor. Typical reaction times were below 1000 msec
for both animals. An experimental session consisted of a
sequence of 60 observation periods, each lasting about
25 seconds. Fixation was maintained for the duration of
the observation period. The monkeys learned to identify
the task based on the fixation spot color.

All the data presented in this paper, apart from those
shown in Figure 9, were collected using objects that the
monkeys could recognize from any viewpoint (the recog-
nition criterion being a hit rate above 95 % for all views,
and a false alarm rate below 5 % for all distractors). The
view-independent recognition of these objects was the
result of either training on multiple views (for example,
0, 60, 120 and 160°), which led to generalization around
an entire axis, or giving feedback for all tested views of
the object during the initial training.

A large majority (796/970; 82 %) of the isolated neurons
were visually active when plotted with a variety of simple
or complex stimuli, including some of the wire or the
spheroidal, amoeboid objects. The rest of the cells
(174/970; 18 %), although often exhibiting a brisk firing
or bursting, could not be driven by any of the visual
stimuli used in our experiments. A small number of the
visually driven neurons (13/796; 1.6 %) were inhibited
upon stimulus presentation. Inhibition was caused mainly
by the target objects, but occasionally by either the target
or some of the distractors. Out of the thirteen inhibited
neurons, three stopped firing entirely upon presentation
of any visual stimulus, including the fixation spot. Some
neurons (169/796; 21.2 %) responded significantly more
to wire objects (whether target or distractor) than to any
object in any of the other classes used in these experi-
ments, whilst others (58/796; 7.3 %) responded only to
the amoeboid objects. A small fraction (3/796; 0.37 %)
responded selectively to specific objects presented from
any viewpoint.
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Fig. 1. (a) Fixation task. The monkey fix-
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screen. (b) Recognition task (see text).
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Fig. 2. View-selective response of an IT neuron to a wire-like object. Peristimulus histograms (PSTHs) show the activity of a view-selec-
tive neuron when (a) the target or (b) distractors were presented. The ordinate and abscissa, labeled in (a), are the same for both sets of
histograms. The insets show the target views and the distractors. Each distractor view was of a different object. Both targets and distrac-
tors were of the same size — apparent size differences are merely the result of scaling the drawings. The boxed plot is the zero view,
presented in the learning phase. Note that the activity of the neuron for a given target view is well above that for distractors up to + 36°
from the preferred view, defining the generalization field of the neuron. The dashed circles in (a) (0° view) and in (b) (distractors 18, 25,
44, 49, 50) serve to highlight one of the features, an inverted ‘V’, which all of these images have in common (see text).

A number of units (93/796; 11.6 %) responded selec-
tively to a subset of views of one of the known target
objects, firing less frequently — or not at all — for the
distractors. To determine the selectivity of these neurons,
their responses to different views were approximated by
fitting the data to a Gaussian function centered on the
view eliciting the greatest response. If a cell responded to
two subsets of views, as was the case for several cells, the
linear sum of two Gaussian functions, one centered on
each ‘most effective’ view, was used to fit the response.
The standard deviation of these functions, which can be
viewed as a measure of the generalization field of the cell,
was used to classify the neurons based on thé following
criterion: cells were considered selective if they respond-
ed significantly more to target views within two standard
deviations of the preferred view than for any of the
distractors. Based on this criterion, 61 neurons (7.66 %)
were found to be tuned around one or two views of the
target object (see Materials and methods).

An example of the response of a view-selective neuron is
shown in Figure 2a. The cell’s firing rate reached a maxi-
mum upon presentation of one particular object view
and declined as the object was rotated away from this
‘preferred’ view. Figure 2b shows 20 out of the 60 differ-
ent distractor wire objects tested and an associated his-
togram of the response each elicited. The within-class
recognition task that the animal was performing-during
the electrophysiological experiments provided an internal
control against common or trivial features being respon-
sible for the neurons’ behavior. Examination of the views
of the target for which the cell is selective revealed some
features that may be characteristic for that view of the
target. For example, the inverted ‘V’ (circled) in the 0°
view in Figure 2a appears to be a prominent feature that
all the response-eliciting target views have in common.

Could the neuron simply be selectively responding to the
presence of this particular feature? This is unlikely,
because an inverted ‘V’ is also present in several of the
distractors (see the circled regions of distractors 18, 25,
44, 49 and 50 in Fig. 2b).

Similar results were obtained with the class of spheroidal
objects; one example is shown in Figure 3. Here, too, the
neuron responds maximally to one view of the object,
rotated 72° from the zero-view, with its response declin-
ing as the angle of rotation deviates in either direction
from the preferred view. Figure 3b shows the ‘best-
response’ eliciting distractors. Although all views of the
target have one particular protrusion that remains visible,
this alone does not seem to be sufficient to elicit a res-
ponse. As indicated by the circled region of the 72° view,
all of the views eliciting a significant response share the
presence of a ‘face-like’ region containing two dimples
and a small protrusion in the lower right. However, simi-
lar regions are also present in two of the distractors, 12
and 14, in the bottom half of the figure, and neither of
these elicited any activity from the cell.

The generalization fields of a number of view-selective
neurons were examined for all rotations in depth using
views neighboring the preferred view along all four axes
(see Materials and methods). An example is shown in
Figure 4a. This cell responded best to the 0° view of the
object, and the magnitude of its response decreased with
increasing angle of rotation along all four axes. In gen-
eral, the tuning width of a neuron, just like the general-
ization field of the animal, was unaffected by the slow
oscillatory motion of the object during the learning phase,
for the following reasons. Firstly, there was no difference
in the tuning when only static views were presented in
the learning phase. Secondly, the tuning width was the
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Fig. 3. View-selective response of a neuron for a spheroidal object. (Conventions as in Fig. 2.)

same around the vertical or any other axis, although the
oscillatory motion was around only the vertical axis. And
thirdly, the tuning around arbitrary views was virtually
the same as that seen around the training view (for exam-
ple, compare Fig. 5a,b). The mean width of the tuning
curves, that is the average standard deviation of the fitted
curve, was 28.87° for wires, and 29.12° for amoebas.

A small percentage of the view-selective cells (5/61;
8.1 %) exhibited their maximum discharge rate for two
views 180° apart (Fig. 4b). The same pattern was observed
in the behavioral performance of the monkeys for several

objects [12]. In both cases, this type of response was spe-
cific to wire-like objects whose zero and 180° views
appeared as mirror-symmetrical images of each other, be-
cause of chance minimal self-occlusion. For some stim-
uli, which were used extensively during the training of
the animal, multiple neurons were found that were selec-
tive for different views of the same object. Figure 5a—d
illustrates such a case for four units, whereas Figure 5e
shows a neuron whose response was found to be invari-
ant to rotations in depth. This cell responded approxi-
mately equally well for all target views and significantly
less to any of the 120 distractors.
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Fig. 4. (a) Response of a view-selective neuron to rotations around the preferred view along four axes. The z dimension of the plot is the
spike rate, and the x and y dimensions show the degrees of rotation of the target object around either or both of the X or Y axes, respec-
tively. The volume was generated by testing the cell’s response for rotations out to = 60 ° around the X and Y axes as well as along the
two diagonals. The magnitude of response declined by approximately the same extent for rotations away from 0° along all of the axes
tested. The activity of the neuron for the 60 distractors is shown in the inset box. Each distractor was a view of a different wire object.
(b) Response of a neuron selective for pseudo-mirror-symmetric views, 180° apart, of a wire-like object. The filled circles are the mean
spike rates for target views around one axis of rotation. The black line is the view-tuning curve obtained by ‘distance-weighted least
squares’ (DWLS) smoothing. The two inset images depict the 120 © and 60 ° views, around both of which the neuron showed view-
selective tuning. The activity of the neuron for the 60 different distractor objects used during testing is shown in the inset box.
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Fig. 5. (a—d). View-selective responses

of four different neurons (459, 461, 520
and 550) tuned to different views of the
same wire object. All data come from
the same animal (55396). The filled cir- 20
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Translation and scale invariance

Receptive field size was estimated by manually moving
the preferred stimulus to different screen positions during
the fixation task, while listening to the audio monitor.
Typically, the responses of the cells fell off rapidly with
image position, with no response for stimulus presenta-
tions as eccentric as 7-10°. Nine of the 61 view-selective
neurons were tested systematically for translation and
scale invariance during either the fixation or the recogni-
tion task. Figures 6 and 7 show the responses of a view-
selective neuron to changes in size and position, res-
pectively. Data were collected during the fixation task.
Regardless of whether the stimulus subtended 1° or 6° of
visual angle, the magnitude of the cell’s response was the
same. Note that the fixation spot, the only unchanging
part of the stimulus, did not elicit a response from the
cell during the first 500 msec of the trial before the stim-
ulus onset. Figure 7 shows the response of the same cell
when the stimulus was translated 7.5° from the fixation
spot. The cell’s response was invariant for small transla-
tions (less than 2.0°), but declined rapidly as eccentricity
increased. At 7.5°, the cell’s activity did not deviate from
the baseline for all tested positions.

An example of a view-selective neuron responding invari-
antly to changes in both size and position within the
parafoveal region for an object is shown in Figure 8. Data
were collected during the recognition task. The stimulus
size was varied from 1.9° to 5.6° of visual angle, and the
positions were at an eccentricity of 3.15°. The cell was
selective for views of the target near the 120° view
(Fig. 8a) and responded 3.5-times more strongly for the
preferred target view than for the best distractor (Fig. 8b).

Responses to scaling and translation were tested using
the preferred view. Figure 8c shows, for the target sizes
tested, the ratio of the target response to the mean res-
ponse for the ten best distractors. Note that all of the
ditractors were of the default size and were presented
foveally. The responses of the same cell to translation are
plotted in Figure 8d. The neuron showed some variation
in its response depending on stimulus position, but in all
cases its response for an eccentrically presented target was
still at least twice that for foveally presented distractors.
Six out of the nine neurons tested gave only scale-invari-
ant responses, while three cells were invariant for both
scale and position.
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Fig. 6. Response-invariance of a view-
tuned neuron to changes in object size.
The monkey was performing a simple
fixation task in which each trial {asted
2500 msec. PSTHs show the activity of
the neuron over the course of a trial.
The ordinate is the mean spike rate and
the abscissa is time. The animal fixated
without a stimulus for the first
500 msec, at which point a stimulus
would appear (indicated by the dashed
line), and the animal continued to fixate
for 2 000 msec, responding to a change
in fixation spot color at the end of the
trial. Each stimulus is shown to the side
of its respective histogram. The circled
stimulus is the one used for testing view
selectivity. The relative size of each
stimulus with respect to the standard
object is represented by x.

Responses to rotations in the picture plane

Eleven IT neurons were tested for their responses to
views generated by rotating an object in the picture
plane. The response of most units (8/11; 73 %) was
found to be orientation dependent (Fig. 9a), with only
one neuron exhibiting view-invariant responses for pic-
ture-plane rotations. Early in testing, however, the animal
also exhibited orientation dependency in its behavioral
performance (Fig. 9b). Both the behavioral and neural
generalization fields for picture-plane rotations were
broader than those typically obtained for rotations in
depth [12]. Interestingly, the ability of the monkeys to
generalize for rotations in the plane improved over time,
without any feedback as to the correctness of the lever
response. Performance often progressed rapidly, over the
course of a few test sessions, to a view-invariant perfor-
mance. This is in strong contrast to the view-dependent
performance seen for rotations in depth, which changed
very little during as many as 15 sessions. Figure 9c¢ illus-
trates two examples of behavioral progression of one ani-
mal’s recognition performance as it evolved from initial

view-dependence to almost complete view-invariance
for two different objects.

Discussion

The results of this study suggest that IT neurons display
experience-dependent plasticity, and support the view that
a population of neurons that individually show configura-
tional selectivity is a mechanism by which complex objects
are encoded in the brain. The neurons discussed above
responded selectively to novel objects that the monkey had
recently learned to recognize. None of these objects had
any prior meaning for the animal, nor did they resemble
anything familiar in the monkey’s environment. View-
selective responses were found for both object types tested
and were not limited to any one region of an object.
However, when cells were tested with objects that the
monkey could recognize only from a specific viewpoint,
no selective responses were ever encountered for those
views that the animal systematically failed to recognize.
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Fig. 8. A view-selective neuron responding invariantly to changes in size and position. (a) Tuning curve showing activity of the neuron
for a limited number of views of the object. The preferred view corresponds to a 120° rotation of the object around the Y axis. (b) The
responses of the cell for the ten best distractors. Distractors were always presented foveally, and at the default size. The best target
view was used to examine the cell’s response to changes in size (¢) and position (d). The response of the cell is plotted in both graphs
as a ratio of the mean spike rate for a target view to the mean of the mean firing rates for the top ten distractors. The bar representing
the response to the default size is indicated by the asterisk in (c). The smallest stimulus, subtending 1.9° of visual angle was used to
test responses to changes in position. In (d), the abscissa of the graph indicates the position of each test image in terms of its azimuth

and elevation.
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Fig. 9. View-dependent behavioral per-
formance and view-selective neuronal
response for an image rotated in the
picture plane. The animal was familiar-
ized with the zero view of the object
during one brief training session prior
to testing. No feedback was given dur-
ing the testing periods as to the correct-
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Because the data have been obtained from only two ani-
mals, a rigorous statistical analysis is presently impossible.
However, it is worth mentioning that the percentages of
célls responding to objects of a particular class correlated
with the amount of training that an animal received on
each class. Monkey S5396 was mainly trained with the
wire objects (682 000 trials with wires out of a total of
756 600 trials, 125 different wire objects), and could iden-
tify 34 wire and 2 amoeboid objects from any given view-
point, whereas monkey B63A was trained with both
types of object (715200 trials with wires out of a total of
1154400 trials), and could identify 35 wire and 8 amoe-
boid objects from any viewpoint. The proportion of cells
responding to wire objects was 78.6 % (133/169) for the
monkey $5396 and 21.4 % for the monkey B63A, where-
as the proportion of cells responding to the spheroidal ob-
jects was 32.7 % (19/58) and 67.3 % (39/58), respectively.

The reported cell responses are unlikely to reflect a gen-
eral sensation of familiarity or arousal, because most
of the neurons responded selectively to a subset of the
tested object views, even when the animal’s recognition

performance was view-invariant. Thus, it seems that
neurons in this area may develop complex configura-
tional selectivity as the animal is trained to recognize spe-
cific objects. Such neurons can be regarded as ‘blurred
templates’, the tolerance of which to small rotations in
depth represents a form of limited generalization.

The capacity of some IT neurons to respond to both an
object view and its ‘pseudo-mirror-symmetrical’ view can
be viewed as a broader form of generalization, possibly
underlying the reflection-invariance observed during the
psychophysical experiments [12]. Distinguishing mirror
images has no apparent usefulness to any animal. In con-
trast, theoretical and psychophysical experiments suggest
that reflection-invariance facilitates the recognition of
bilaterally-symmetric visual objects [28]. In this sense,
even the well-known inability of normal children to dis-
tinguish between mirror-symmetrical letters or words
[29,30] may be simply an adaptive mode of processing
visual information, and not a ‘confusion’ [31,32]. Interes-
tingly, neurons responding to mirror images of a face
appear very early in the visual system of the monkey [23].
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A number of the reported neurons showed response
invariance to some affine image transformations. Similar
response behavior has previously been reported for two-
dimensional patterns, such as the Fourier descriptors
[33], and for faces [17,34,35]. In our sample, position
invariance varied from one extreme, where responses
were strongly reduced by small translations (often less
than 2°), to the other extreme, where responses remained
largely invariant for eccentricities up to 7.5°.

The degree of view-dependency of the neuronal and
monkey responses for object rotations in the picture
plane was surprising. Psychophysical studies in humans
have revealed that the recognition of objects rotated in
the picture plane is different from the recognition of
objects rotated in depth. For example, Tarr and Pinker
[6,36,37] studied the effects of picture-plane rotation on
recognition, and found that familiarization with one
view of an object results in view-independent perfor-
mance, although reaction times do increase with devia-
tion from the learned view. This performance can be
altered by training the subjects briefly on a second view,
resulting in an improvement in performance around the
new learned view and, to a lesser extent, for those views
between the two familiar views. In our experiments, the
behavior of the monkeys was initially strongly view-
dependent in terms of error rate. However, in contrast to
the recognition-performance observed for rotations of
the object in depth, the hit rate for view-plane rotations
increased gradually over successive sessions in the absence
of any feedback to the animal as to the correctness of its
response. No neuron was isolated for long enough to
observe any possible changes at the single-cell level.

One question that arises from these results is: are such
neurons really responding to the ‘views’ of the tested ob-
jects? Studies by Tanaka and his colleagues [21] showed,
for instance, that the response of many neurons to com-
plex objects can be mimicked using simpler forms repre-
senting regions of the objects. Similarly, the neurons
studied here could be responding to a reduced set of fea-
tures of the wire or spheroidal objects and not to an
entire view. Two observations seem to refute such an
alternative. Firstly, the neurons were tested with a variety
of simple objects, including geometric patterns of differ-
ent orientations, to which they failed to elicit any
response. Secondly, the presentation of between 60 and
120 distractors from the same or a different object class
served as a selectivity~control for each of the targets.

In the case of the wire-objects, for example, the distrac-
tors had at least 60 different combinations of simple fea-
tures — such as orientations, angles or terminations —
some of which were highly similar to features of the tar-
get object. In fact, cells were found that responded to the
presentation of both the target and a number of distractor
objects, presumably excited by such simpler features.
However, the 61 neurons discussed here gave minimal,
and sometimes non-existent, responses for distractor
objects, even when the latter shared a few characteristic

regions with the target — suggesting that a specific orga-
nization of certain features was required for eliciting the
neuron’s response.

Nevertheless, both arguments are based on qualitative ob-
servations, and what we present here as ‘view-selectivity’
may still be reducible to selectivity for less complex feature
constellations. A systematic, mathematical analysis of ob-
ject views that elicit similar neural responses, and an
attempt to develop algorithms for biologically-plausible
image decomposition may provide an answer to the ‘selec-
tivity’ question, and is the focus of current experiments.

Conclusions

The data presented here suggest that the receptive-field
properties in the visual area IT may be ‘tunable’ to ac-
comodate changes in the recognition requirements of the
animal. The discharge rate of some IT neurons was found
to be a bell-shaped function of orientation centered on a
preferred view, and a very small number of neurons ex-
hibited object-specific but view-invariant responses that
might be the result of the convergence of view-depen-
dent units onto neurons showing characteristics of object-
centered descriptions. The input of each view-selective
unit can be considered as the conjunction of simpler fea-
tures extracted at earlier stages in the visual system. The
variability in the degree of response-invariance during
affine image transformations also hints at a multilayered,
possibly hierarchical, architecture that resembles the net-
work described in the Background section.

Such a scheme is obviously oversimplified and lacks the
‘top-down’ mechanisms that are known strongly to affect
recognition performance. The processing of object infor-
mation is undoubtedly far more complex, and represen-
tations might be local and explicit, or distributed and
implicit, according to the recognition task or the stimulus
context. Although the ultimate goal of a recognition
sytem is to describe grouped object features in a more
abstract format that captures the invariant, three-dimen-
sional, geometric properties of an object, early represen-
tations may be in some cases strongly configurational.
Moreover, for visually complex objects, like many biol-
ogically meaningful objects, holistic representations may
be the only ones possible. Neurons selective for particular
object views and tolerant, to varying extents, of image
transformations may then be elements of one possible
mechanism for such representations.

Materials and methods

Subjects and surgical procedures

Two juvenile rhesus monkeys (Macaca mulatta) weighing
7-9 kg were tested in the electrophysiological studies. The ani-
mals were cared for in accordance with the National Institutes
of Health Guide, and the guidelines of the Animal Protocol
Review Committee of the Baylor College of Medicine.
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After preliminary training, the animals underwent an aseptic
surgery, using isoflurane anaesthesia (1.2 %-1.5 %), for place-
ment of the head-restraint post and the scleral-search eye-coil.
Throughout the surgical procedure the heart rate, blood pres-
sure and respiration were monitored constantly and recorded
every 15 min. Body temperature was kept at 37 °C using a heat-
ing pad. Post-operatively, the monkeys were administered an
opioid analgesic (Buprenorphine hydrochloride, 0.02 mg kg™!)
every 6 h for one day, and Tylenol (10 mg kg™!) and antibiotics

- {Tribrissen, 30 mg kg™!) for 3—5 days. At the end of the training

period, another sterile surgical operation was performed to
implant a chamber for the electrophysiological recordings.

Visual stimuli

The visual objects were presented on a monitor situated 97 cm
from the animal. The selection of the vertices of the wire ob-
jects within a three-dimensional space was constrained to ex-
clude intersection of the wire-segments and extremely sharp
angles between successive segments, and to ensure that the
diference in the moment of inertia between different wires
remained within a limit of 10 %. Once the vertices were se-
lected, the wire objects were generated by determining a set of
rectangular facets covering the surface of a hypothetical tube,
of a given radius, that joined successive vertices.

The spheroidal objects were created through the generation
of a recursively-subdivided triangle mesh approximating -a
sphere. Protrusions were generated by randomly selecting a
point on the sphere’s surface and stretching it outward. Spher-
oidal stimuli were characterized by the number, sign (negative
sign corresponded to dimples), size, density and standard devi-
ation (o) of the Gaussian-type protrusions. Similarity was var-
ied by changing these parameters as well as the overall size of
the sphere.

The view generated by the selection of the appropriate parame-
ters was arbitrarily named the ‘zero view’ of the object, and it
was used as the training-view. Test views were typically gener-
ated by +10° to 180° rotations around the vertical (Y), horizon-
tal (X), or the two oblique (£45°) axes lying in the X-Y plane.

Animal training

The details of our training procedures are described elsewhere
[12]. The animals were first trained to identify the zero view of
a target among a large set of distractors, and subsequently to
recognize target views resulting from progressively larger rota-
tions around one axis. After the monkeys learned to recognize
a given object from any viewpoint in the range of £90° around
the zero view, the procedure was repeated with a new object.
A criterion of 95 % correct for the target, and less than 5 %
false-alarm rate for all distractors had to be met before training
with another object was undertaken.

In the beginning of the training, a fruit-juice reward followed
each correct response. As the training progressed, the animals
were reinforced on a variable-ratio schedule, and, in the last
stage of the training, the monkeys were rewarded only after ten
consecutive correct responses. In the training period, the mon-
keys always received feedback as to the correctness of each
response, as incorrect reports aborted the entire observation
period. However, no feedback was given during the psycho-
physical data collection, even when the animals were presented
with novel objects.

On average, four months of training were needed for the mon-
keys to learn to generalize the task across different types of

object in one class, and about six months were required for the
animals to perform the recognition task for any given novel
object. Within an object class, the similarity of the targets to
the distractors was increased gradually. In the final stage of the
experiments, distractors were generated by adding different
degrees of noise to the parameters of the target object.

In the electrophysiological experiments, the animal was re-
quired to maintain fixation throughout the entire observation
period. Eye movements were measured using the scleral-search
coil technique and digitized at 200 Hz.

Electrophysiological recording

Recording of single-unit activity was done using platinum-
iridium electrodes of 2-3 Megaohms impedance. The elec-
trodes were advanced into the brain through a 21-gauge guide
tube mounted into a ball-and-socket positioner. The stereo-
tactic coordinates of the insertion point of the tube were
15 mm anterior and 22 mm lateral for the monkey $5396, and
19 mm anterior and 22 mm lateral for the monkey B63A. By
swivelling the guide tube, different sites could be accessed
within an approximately 10 x 10 mm cortical region.

Because both animals are currently being used in further exper-
iments on object recognition, no histological reconstructions
are available at this time. However, based on the stereotactic
position of the carrier, the brain atlas for the related species
Macaca nemestrina [38], the patterns of white and gray matter
transitions, and a set of X-ray images, the recording site is esti~
mated to be in the upper bank of the AMTS. The view-selec-
tive neurons reported here, were recorded from a region
extending from about 15 to 21 mm anterior to the Horsley-
Clark zero. We have recently obtained additional evidence
regarding the recording sites, by combining the X-ray images
of the monkey B63A with the magnetic resonance images of
another monkey of the same size. Magnetic resonance imaging,
which has been recently made available to us, is not possible
with the monkeys used in this project, because the recording
chambers have already been implanted.

Action potentials were amplified (Bak Electronics, Model 1A-
B), filtered, and routed to an audio monitor (Grass AM-8)
and to a time—amplitude window discriminator (Bak Model
DIS-1). The output of the window discriminator was used to
trigger the real-time clock interface of a PDP11/83 computer.

Data analysis

The significance of differences between mean spike rates mea-
sured during the target presentations and those measured dur-
ing the distractor presentations was tested by using the
non-parametric Walsh test for two related samples [39]. For
our sample size (n=10 presentations per target-view or distrac-
tor), the power efficiency — roughly the percentage of the
total available information per observation that is used by the
test — of the one-tailed Walsh test at ®=0.011 is 98 % of that
of the parametric 1 test at ®=0.05. This test avoids the use of
assumption-laden dispersion measures, and it only requires that
the data are distributed symmetrically, so that the mean is an
accurate representation of central tendency, coinciding with
the median of the distribution. Mean spike rates are indeed
distributed symmetrically.

Our H,, (the null hypothesis) was that the median difference,
M, between the target-responses and the distractor-responses is
zero, and H, was that p>0. A one-tailed rejection region was
used. Hy was rejected if min[d3,(d1+d5)/2] > 0, where the d/’s
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were the ordered response differences (d,<d,<d,<......<d), for
any given target-distractor pair in each of the 10 presentations.

The response of the 61 view-selective cells to each target view
within two standard deviations of the preferred view were
found to be equal to or greater than their response to any of
the distractor views, at a=0.011. For all three cells that gave
view-invariant responses, including the one shown here, the
response to the worst-view was significantly greater than to the
best-distractor, at «=0.05.
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