View-dependent object recognition by monkeys

N.K. Logothetis*, J. Pauls*, H.H. Biilthoff* and T. Poggio*

*Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. tMax-Planck Institut fiir
Biologische Kybernetik, Spemannstrasse 38, 72076 Tiibingen, Germany. *Center for Computational and Biological Learning, and
Department of Brain Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Background: How do we recognize visually
perceived three-dimensional objects, particularly
when they are seen from novel view-points? Recent
psychophysical studies have suggested that the
human visual system may store a relatively small
number of two-dimensional views of a three-
dimensional object, recognizing novel views of the
object by interpolation between the stored sample
views. In order to investigate the neural mechanisms
underlying this process, physiological experiments are
required and, as a prelude to such experiments, we
have been interested to know whether the observa-
tions made with human observers extend to monkeys.
Results: We trained monkeys to recognize computer-
generated images of objects presented from an
arbitrarily chosen training view and containing
sufficient three-dimensional information to specify the
object’s structure. We subsequently tested the trained
monkeys’ ability to generalize recognition of the
object to views generated by rotation of the target
object around any arbitrary axis. The monkeys recog-
nized as the target only those two-dimensional views
that were close to the familiar, training view.
Recognition became increasingly difficult for the
monkeys as the stimulus was rotated away from the

experienced viewpoint, and failed for views farther
than about 40° from the training view. This suggests
that, in the early stages of learning to recognize a pre-
viously unfamiliar object, the monkeys build
two-dimensional, viewer-centered object representa-
tions, rather than a three-dimensional model of the
object. When the animals were trained with as few as
three views of the object, 120° apart, they could often
recognize all the views of the object resulting from
rotations around the same axis.

Conclusion: Our experiments show that recognition
of three-dimensional novel objects is a function of the
object’s retinal projection. This suggests that non-
human primates, like humans, may accomplish
view-invariant recognition of familiar objects by a
viewer-centered system that interpolates between a
small number of stored views. The measures of recog-
nition performance can be simulated by a
regularization network that stores a few familiar
views, and is endowed with the ability to interpolate
between these views. Our results provide the basis for
physiological studies of object-recognition by
monkeys and suggest that the insights gained from
such studies should apply also to humans.
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Background

Most theories of object recognition assume that the
visual system stores a representation of an object and
that recognition occurs when this stored representation
is matched to the corresponding sensory representation
generated from the viewed object {1]. But what is the
nature of these representations, what is stored in the
memory, and how is the matching process imple-
mented? Possible representations could be characterized
by addressing the following four issues: first, the recog-
nition task; second, the attributes to be represented;
third, the nature of primitives that would describe these
attributes; and fourth, the spatial reference frame with
respect to which the object is defined.

Representations may vary for different recognition tasks.
A fundamental task for any recognition system is to cut
the environment up into categories, the members of
which, although non-identical, are conceived of as
equivalent. Such categories often relate to each other by
means of class inclusion, forming taxonomies. Objects
are ‘usually recognized first at a particular level of
abstraction, called the basic level [2]. For example, a

golden retriever is more likely to be perceived first as
a dog, rather than as a retriever or as a mammal.
Classifications at the basic level carry the highest
amount of information about a category and are usually
characterized by distinct shapes [2]. Classifications
above the basic level, superordinate categories, are
more general, whereas those below the basic level,
subordinate categories, are more specific, sharing a
great number of attributes with other subordinate cate-
gories, and to a large extent having a similar shape (for
a thorough discussion of categories see [2-4]).
Most of these classifications are closely related to
propositional representations and their linguistic
meaning. Clearly, in the non-human primate, categories
have no bearing on language. However, there is little
doubt that monkeys can discriminate quickly between
predators, prey, infant monkeys, food or other ethologi-
cal categories in their habitats. Even more likely is that
the telling apart of faces from bananas may rely on
strategies other than those employed for the recognition
of different facial expressions.

Representations of objects at different taxonomic levels
may differ in their attributes, the nature of the primitives
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describing the various attributes, and the reference
frame used for the description of the object. In primate
vision, shape seems to be the critical attribute for
object recognition. Material properties, such as color or
texture, may be important primarily at the most sub-
ordinate levels. Recognition of objects is typically
unaffected by the absence of color or texture informa-
tion, as in gray-scale photographs, line drawings, or in
cartoons. An elephant, for example, would be recog-
nized as an elephant, even if it were painted yellow
and textured with blue spots. Evidence for the impor-
tance of shape for object perception comes also from
clinical studies showing that the breakdown of recog-
nition, resulting from circumscribed damage to the
human cerebral cortex, is most marked at the sub-
ordinate level, at which the greatest shape similarities
occur [5].

Models of recognition differ in the spatial frame used
for shape representation. Current theories, using object-
centered representations, assume either a complete
three-dimensional description of an object [1}, or a
structural description of the image that specifies the
relationships among viewpoint-invariant volumetric
primitives {6,7]. In contrast, viewer-centered representa-
tions model three-dimensional objects as a set of
two-dimensional views, or aspects, and recognition
consists of matching image features against the views
held in this set.

When tested against human behavior, object-centered
representations predict well the view-independent
recognition of familiar objects [7]. However, psy-
chophysical studies using familiar objects to investigate
the processes underlying ‘object constancy’, in other
words the viewpoint-invariant recognition of objects,
can be misleading because a recognition system based
on three-dimensional descriptions cannot easily be
discerned from a viewer-centered system exposed to a
sufficient number of object views. Furthermore, object-
centered representations fail to account for the subject’s
performance in recognition tasks with various kinds of
novel objects at the subordinate level [8-12]. Viewer-
centered representations, on the other hand, can
account for recognition performance at any taxonomic
level, but they are often considered implausible as a
result of the vast amount of memory required to store
all discriminable object views needed to achieve
viewpoint invariance.

Yet, recent theoretical work has shown that a simple
network can achieve viewpoint invariance by inter-
polating between a small number of stored views [13].
Computationally, this network uses a small set of
sparse data corresponding to an object’s training views
to synthesize an approximation to a multivariate
function representing the object. The approximation
technique is known by the name of Generalized Radial
Basis Functions (GRBFs), and it has been shown to be
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Fig. 1. Examples of three stimulus objects used in the experiments on object recognition. (a) Wire-like, (b) spheroidal, and (c) common
objects were rendered by a computer and displayed on a color monitor. The middle column of the ‘Targets’ shows the view of each
object as it appeared in the learning phase of an observation period. This view was arbitrarily called the zero view of the object.
Columns 1, 2, 4, and 5 show the views of each object when rotated - 48°, — 24°, 24° and 48° about the vertical axis respectively.
Column 6 shows an example of a distractor object for each object class; 60120 distractor objects were used in each experiment.
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Fig. 2. The experimental paradi%m. (a) Description of the task. An observation period consisted of a learning phase, within which the
target object was presented oscillating + 10° around a fixed axis, and a testing phase during which the subjects were presented with up
to 10 single, static views of either the target (T) or the distractors (D). The small insets in this and the following figures show examples
of the tested views. The subject had to respond by pressing one of two levers, right for the target, and left for the distractors. (b) The
stimulus space: the viewpoint coordinates of the observer with respect to the object were defined as the longitude and the latitude of
the eye on a virtual sphere centered on the object. Viewing the object from an attitude (a), for example — 60° with respect to the zero
view, corresponded to a 60° rightwards rotation of the object around the vertical axis, whereas viewing from an attitude (b) amounted
to a rightwards rotation around the — 45° axis. Recognition was tested for views generated by rotations around the vertical (y),

horizontal (x), and the two + 45° oblique axes lying on the xy plane.

mathematically equivalent to a multilayer network [14).
A special case of such a network is that of the Radial
Basis Functions (RBFs), which can be conceived of as
‘hidden-layer’ units, the activity of which is a radial
function of the disparity between a novel view and a
template stored in the unit’s memory. Such an inter-
polation-based network makes both psychophysical
and physiological predictions [15] that can be directly
tested against behavioral performance and single-cell
activity.

In the experiments described below, we trained
monkeys to recognize novel objects presented from one
view, and subsequently tested their ability to generalize
recognition to views generated by mathematically
rotating the objects around arbitrary axes. The stimuli,
examples of which are shown in Figure 1, were similar
to those used by Edelman and Biilthoff [12] in human
psychophysical experiments. Our long-term goal is to
study the neural representation of visual objects in elec-
trophysiological experiments in behaving monkeys. To
this end, we set out first to examine how non-human
primates achieve viewpoint invariance for previously
unfamiliar objects. Monkeys can clearly recognize faces
and facial expressions, as well as a variety of other
objects in their natural environment. Moreover, they do
so despite differences in the retinal projections of
objects seen at different orientations, sizes and
positions. But is their performance in acquiring
viewpoint invariance consistent with a viewer-centered
representation of objects? If so, is view invariance
achieved by interpolating between a small number of
views learned and stored through frequent exposure?

Brief reports of early experiments in this area have been
published previously [16,17].

Results

Viewpoint-dependent recognition performance

Three monkeys and two human subjects participated in
this experiment, and all subjects yielded similar results;
only the monkey data are presented in this paper. The
animals were trained to recognize any given object,
viewed on one occasion in one orientation, when pre-
sented on a second occasion in a different orientation.
Technically, this is a typical ‘old—new’ recognition task,
whereby the subject’s ability to retain stimuli to which it
has been exposed is tested by presenting those stimuli
intermixed with other objects never before encountered.
The subject is required to state for each stimulus
whether it is ‘old’ (familiar) or ‘new’ (never seen
before). This type of task is similar to the yes—no task of
detection in psychophysics and can be studied under
the assumptions of the signal detection theory [18,19].

Figure 2a describes the sequence of events in a single
observation period. Successful fixation of a central light
spot was followed by the ‘learning phase’, during which
the monkeys were allowed to inspect an object, the
target, from a given viewpoint, arbitrarily called the
‘zero view'. To provide the subject with three-dimen-
sional structural information, the target was presented
as a motion sequence of 10 adjacent, Gouraud-shaded
views, 2° apart, centered around the zero view. The
animation was accomplished at a two frames-per-view
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Fig. 3. Recognition performance as a function of rotation in depth for wire-like objects. Data obtained from monkey B63A. (a) The
abscissa of the graph shows the rotation angle and the ordinate the hit rate. The red squares show performance for each tested
view for 240 presentations. The solid lines were obtained by a distance-weighted least-squares smoothing of the data using the
McLain algorithm. When the object is rotated more than about 30-40° away from the zero view, the subject's performance falls
below 40 %. (b) False alarms for the 120 different distractor objects. The abscissa shows the distractor number, and the ordinate the
false alarm rate for 20 distractor presentations. (c) Recognition performance for rotations around the vertical, horizontal, and the two

+ 45° oblique axes.

temporal rate — in other words each view lasted 33.3
msec, yielding the impression of an object oscillating
slowly + 10° around a fixed axis.

The learning phase was followed by a short fixation
period after which the ‘testing phase’ started. Each
testing phase consisted of up to 10 trials. The beginning
of a trial was indicated by a low-pitched tone, immedi-
ately followed by the presentation of the test stimulus, a
shaded, static view of either the target or a ‘distractor’.
Target views were generated by rotating the object
around one of four axes, the vertical, the horizontal, the
right oblique, or the left oblique (Fig. 2b). Distractors

were other objects from the same or a different class
(Fig. 1). Two levers were attached to the front panel of
the monkey chair, and reinforcement was contingent
upon pressing the right lever each time the target was
presented. Pressing the left lever was required upon
presentation of a distractor. Note that no feedback was
given to the animals during the psychophysical data
collection (see Materials and methods). A typical experi-
mental session consisted of a sequence of 60
observation periods, each of which lasted about 25
seconds. The same target view, the zero view, was
presented in the learning phase of each observation
period.
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Fig. 4. Recognition performance as a function of rotation in depth for amoeba-like, spheroidal objects. (Data from monkey B63A and

represented as in Fig. 3.)
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Figure 3a shows how one of the monkeys performed
for rotations around the vertical axis. Thirty target views
and 60 distractor objects were used in this experiment.
On the abscissa of the graph are plotted the rotation
angles and on the ordinate the experimental hit rate.
The small red squares show the performance for each
tested view for 240 presentations. The solid line was
obtained by a distance-weighted least-squares
smoothing of the data using the McLain algorithm [20].
The insets show examples of the tested views. The
monkey could correctly identify the views of the target
around the zero view, but its performance dropped
below chance levels for disparities larger than 30° for
leftward rotations, and larger than 60° for rightward
rotations. Performance below chance level is probably
the result of the large number of distractors used within
a session, which limited learning of the distractors per
se. Therefore an object that was not perceived as a
target view was readily classified as a distractor.

Figure 3b shows the false alarm rate, that is, the per-
centage of times that a distractor object was reported as
a view of the target. The abscissa shows the distractor
number, and the squares the false alarm rate for 20 pre-
sentations of each distractor. Recognition performance
for rotations around the vertical, horizontal, and
the two oblique axes (x 45°) can be seen in Figure 3c.
The x and y axes on the bottom of the plot show the
rotations in depth, and the 2z axis the experimental hit
rate. In some experiments, the same object was used for
more than 15 sessions. The monkey’s ability to general-
ize improved in the first couple of sessions, yielding
recognition performance like that illustrated in Figure
3a. No further improvement was observed for objects
experienced from a single view.

To exclude the possibility that the observed view
dependency was specific to non-opaque structures
lacking extended surfaces, we have also tested recogni-
tion performance using spheroidal, amoeba-like objects
with characteristic protrusions and concavities. Thirty-
six views of a target amoeba-like object and 120
distractors were used in any given session. As illustrated
in Figure 4, the monkey was able to generalize only for
a limited number of novel views clustered around the
views presented in the training phase. In contrast, the
monkey’s performance was found to be viewpoint-
invariant when the animals were trained with multiple
views of wire-like or amoeba-like objects, or when they
were tested for basic level classifications. (It should be
noted that the term ‘basic-level’ is used here to denote
that the the targets were largely different in shape from
the distractors.)

Figure 5 shows the mean performance of three
monkeys for each of the object classes tested. Each
curve was generated by averaging individual hit-rate
measurements obtained from different monkeys for
different objects within a class. The data shown in
Figure 5b were collected from three monkeys using two
spheroidal, amoeba-like objects. The asymmetric tuning
curve denoting better recognition performance for

rightwards rotations is probably due to an asymmetric
distribution of characteristic protrusions in the two
amoeboid objects. Figure 5c¢ shows the ability of
monkeys to recognize a common object, for example a
teapot, presented from various viewpoints. Distractors
were other common objects or simple geometrical
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common-type objects. Each data point represents the average
hit-rate from two sessions with each monkey. (Data represented
as in Fig. 3.)
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Fig. 6. Improvement of recognition performance for views generated by 180° rotations of wire-like objects. Data are from monkey
$5396 and as described in Fig. 3. This type of performance was specific to the wire-like objects, the zero view and 180° view of which
resembled mirror symmetrical two-dimensional images due to accidental lack of self-occlusion.

shapes. As all animals were already trained to perform
the task independently of the object type used as a
target, no familiarization with the object’s zero view
preceded the data collection in these experiments.
Therefore, the object’s zero view was experienced only
during the learning phase of each observation period.
Yet, the animals were able to generalize recognition for
all the tested novel views.

For some objects, the subjects were better able to
recognize the target from views resulting from a 180°
rotation of the target. This type of behavior from one of
the monkeys is shown in Figure 6a. As can be seen , its
performance drops for views farther away than 30°
rotation, but resumes as the unfamiliar views of the
target approach a 180° view of the target. This behavior
was specific to the wire-like objects, the zero view and
180° view of which appeared as mirror-symmetrical
images of each other, due to accidental, minimal self-
occlusion. In this respect, the improvement in the
monkey’s performance parallels the reflectional invari-
ance observed in human psychophysical experiments
[21]. Such reflectional invariance may also partly explain
the observation that information about bilateral
symmetry simplifies the task of recognition of a three-
dimensional object by reducing the number of views
required to achieve object recognition constancy [22].
Not surprisingly, performance around the 180° view of

an object did not improve for any of the opaque,
amoeba-like spheroidal objects used in these
experiments.

Simulations of the generalization field

Poggio and Edelman [13] described a regularization
network capable of performing view-independent recog-
nition of three-dimensional wire-like objects based on
RBFs, after an initial training with a limited set of views
of the objects. The set size required in their experi-
ments, 80-100 views of an object for the entire viewing
sphere, predicts a generalization field of about 30° for
any given rotation axis, which is in agreement with the
results obtained from human psychophysical work
[8,9,11,12], and with the data presented in this paper.

Figure 7 illustrates an example of such a network and
its output activity. A two-dimensional view (Fig. 7a) can
be represented as a vector of the points of some visible
feature on the object. In the case of wire objects, these
features could be the x and y coordinates of the vertices
or the orientation, corners, size, length, texture and
color of the segments, or any other characteristic
feature. In the example shown in Figure 7b, the input
vector consists of seven segment orientations. For sim-
plicity, we assume as many basis functions as the views
in the training set. Each basis unit, U,, in the ‘hidden-
layer’ calculates the distance 1V ~T,ll of the input vector
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Fig. 7. A network for object recognition. (a) A view is represented as a vector of the points of some visible feature on the object. On
the wire objects these features could be the x and y coordinates of the vertices, the orientation, size, length and color of the segments,
etc. (b) An example of an RBF network in which the input vector consists of the segment orientations. For simplicity, we assume as
many basis functions as views in the training set, in this example four views at 0°, 60°, 120°, and 180°. Each basis unit, U, in the
‘hidden-layer’ calculates the distance IV - Tl of the input vector V from its center T, in other words its learned or ‘preferred’ view,
and it subsequently computes the function exp (~ IV — T,l)) of this distance. The value of this function is regarded as the activity of the
unit, which peaks when the input is the trained view itself. The activity of the network is conceived of as the weighted, linear sum of
each unit’s output superimposed on Gaussian noise (€€, N(V,o2)). Thick lines show the output of the network after training with only
the zero view of the target. (c) The plots show the output of each RBF unit, under ‘zero-noise’ conditions, when the unit is presented
with views generated by rotations around the vertical axis. (d) Network output for target and distractor views. The thick gray line on
the left plot depicts the activity of the network trained with four views of the object and the black line with only its zero view. The right
plot shows the network’s output for 36 views of 60 distractors.
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network. The solid gray line is the distance-weighted least-squares smoothing of the data for all the tested views; the dashed line shows

data from chance performance.

v from its center T, in other words its learned or
‘preferred’ view, and it subsequently computes the
function exp (-1IV — T;iD) of this distance. The value of
this function is regarded as the activity of the unit and it
peaks when the input is the trained view itself. The
activity of the network is conceived of as the weighted,
linear sum of each unit’s output. In the present simula-
tions we assume that each unit’s output is
superimposed on Gaussian noise, N(V,02), the o2 of
which was estimated from single-unit data in the
inferotemporal cortex of the macaque monkey [16].

The four plots in Figure 7¢ show the output of each
RBF unit when presented with views generated by
rotations around the vertical axis. Units U; to U, are

centered on the 0°, 60°, 120° and 180° views of the
object, respectively. The abscissa of each plot shows the
rotation angle and the ordinate the unit’s output
normalized to its response to the target’s zero view.
Note the bell-shaped response of each unit as the target
object is rotated away from its familiar attitude. The
output of each unit can be highly asymmetric around
the center because the independent variable of the
radial function is the norm |lv — T,;Il and not the
rotation angle used on the abscissa of the plot. Figure
7d shows the total activity of the network under ‘zero
noise’ conditions. The thick, blue line in the left plot
illustrates the network’s output when the input is any of
the 36 tested target views. The right plot shows its
mean activity for any of the 36 views of each of the 60



Object recognition by monkeys Logothetis et al.

RESEARCH PAPER 409

BB452609

| @ Leftward rotations
10 ——8—a—a—=8 1.0
= 7
o [ /
0.8 0.8 ¢ @
¥
0.6 ot *
kit .6 ‘: 105 0.6 ; +* %
rate o »*—k 90 *
0.4 H s—o /4 | 04 g
- ‘ 60 ¥
*—o 45 *
0.2 — 30 0.2 4
~— /15
=< 0
0.0 s s 0.0 s
0.4 0.6 0.8 1.0 0 0.2 0.4
False alarm rate

(b) Rightward rotations (c)

g True

0.6

100 s

L
o Monkey
- 80

hit
rate

60 Network

40 [

-60 0 60
Rotation around Y axis (°)

0.8 1.0 -180 =120 120 180

Fig. 9. ROC curves of the data obtained from one monkey in the old-new task used to study recognition. The data were obtained by
varying the a priori probability of target occurrence in a block of observation periods. The probability values used in this experiment
were 0.2, 0.4, 0.6, and 0.8. (a) Each curve corresponds to a set of hit and false alarm rate values measured for a leftward rotation.
Rotations were done in 15° steps. (b) Same as in (a), but for rightward rotations. () Recognition performance for different object views.
Each red square represents the area under the corresponding ROC curve. The solid blue line models the data with a single Gaussian
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distractors. The thick, black lines in Figures 7b, ¢, and d
show the representation and the activity of the same
network when trained with only the zero view, simulat-
ing the actual psychophysical experiments described
above.

To compare directly the network’s performance with
the psychophysical data described above, we used the
same wire objects that were used in our first experiment
to determine the generalization fields, and applied a
decision-based theoretical analysis to the network’s
output [18). The white bars in Figure 8a show the distri-
bution of the network’s activity when the input was any
of the 60 distractor wire objects. The black bars
represent the activity distribution for a given target view
(at =50°, -30°, 0°, 30°, and 50°). The receiver operating
characteristic (ROC) curves for views generated by
rightward and leftward rotations are illustrated in
Figures 8b and c respectively. Figure 8d shows the per-
formance of the network as an observer in a
two-alternative forced-choice (2AFC) task. Red squares
represent the area under the corresponding ROC curve,
and the thick blue line shows the result of modeling of
the data with a Gaussian function computed using the
quasi-Newton minimization technique.

Psychophysical data to explain the generalization field

The purpose of these experiments was to generate psy-
chometric curves that could be used for comparing the
psychophysical, physiological, and computational data
in the context of the above task. One way to generate
ROC curves in psychophysical experiments is to vary
the a priori probability of signal occurrence, and
instruct the observer to maximize the percentage of
correct responses. As the training of the monkeys was
designed to maximize the animal’s correct responses,
changing the a priori probability of target occurrence
did induce a change in the animal’s decision criterion,
as is evident in the variation of hits and false alarms in
each of the curves in Figures 9a and b.

The data were obtained by setting the a priori probabil-
ity of target occurrence in a block of observation
periods to 0.2, 0.4, 0.6, or 0.8. Figures 9a and b show
ROC curves for leftward and rightward rotations respec-
tively. Each curve is created from the four pairs of hit
and false alarm rates obtained for any one given target
view. All target views were tested using the same set of
distractors. The criterion-independent’, true hit rate of
the monkey is plotted in Figure 9c. Each filled circle
represents the area under the corresponding ROC curve
in Figures 9a and b. The solid blue line shows modeling
of the data by a Gaussian function. Note the similarity
between the monkey’s performance and the simulated
data (thin black line).

Interpolation between two trained views

A network, such as that shown in Figure 7, represents
an object specified as a set of two-dimensional views,
the templates; when the object’s attitude changes, the
network generalizes instead through a non-linear inter-
polation. In the simplest case, in which the number of
basis functions is taken to be equal to the number of
views in the training set, interpolation depends on the
¢; and o of the basis functions, and on the disparity
between the training views. Furthermore, unlike
schemes based on linear combination of the two-dimen-
sional views of an object [23], the non-linear
interpolation model predicts that recognition of novel
views, beyond the above measured generalization field,
will occur only for those views situated between the
templates.

To test this prediction experimentally, the monkeys’
ability to generalize recognition from novel views was
examined after training the animals with two succes-
sively presented views of the target 120° and 160° apart.
The results of this experiment are illustrated in Figures
10a and b. The monkey was initially trained to identify
the zero view and the 120° view of a wire-like object
among 120 distractors of the same class. During this
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Fig. 10. Interpolation between two trained views. (a) In the learning phase the monkey was presented sequentially with the zero view
and 120° view of a wire-like object, and subsequently tested with 36 views around any of the four axes (horizontal, vertical and the
two obliques). The contour plot shows the performance of the monkey for views generated by rotating the object around these four
axes.The spikes normal to the contour-plot show the hit rate for rotations around the y axis. Note the somewhat increased hit rate for
views around the - 120° view. (b) Repetition of the same experiment after briefly training the monkey with the 60° view of the wire
object. The monkey can now recognize any view in the range of — 30° to 140° as well as around the — 120° view. As predicted by the

RBF model, generalization is limited to views between the two training views.

period the animal was given feedback as to the correct-
ness of the response. Training was considered complete
when the monkey’s hit rate was consistently above
95%, the false alarm rate remained below 10%, and the
dispersion coefficient of reaction times was minimized.
A total of 600 presentations were required to achieve
the above conditions, after which testing and data
collection began.

During a single observation period, the monkey was
first shown the familiar zero view and 120° view of the
object, and then presented sequentiaily with 10 stimuli
that could be either target or distractor views. Within
one experimental session, each of the 36 tested target
views was presented 30 times. The spikes on the xy
plane of the plot show the hit rate for each view
generated by rotations around the y axis. The solid line
represents a distance-weighted, least-squares smoothing
of the data using the Mclain algorithm {20]. The results
show that interpolation between familiar views may be
the only generalization achieved by the monkey’s
recognition system. No extrapolation is evident with the
exception of the slightly increased hit rate for views
around the -120° view of the object that approximately
corresponds to a 180° rotation of some of the
interpolated views.

The contour plot summarizes the performance of the
monkey for views generated by rotating the object
around the horizontal, vertical, and the two oblique
axes; 36 views were tested for each axis, each
presented 30 times. The results show that the ability of
the monkey to recognize novel views is limited to views
within the space between the two training views, as
predicted by the model of non-linear interpolation. The
experiment was repeated after briefly training the

monkey to recognize the 60° view of the object. During
the second training period, the animal was simply given
feedback as to the correctness of the response for the
60° view of the object. The results can be seen in Figure
10b. The monkey was able to recognize all views of the
object between the zero view and the 120° view.
Moreover, its performance improved significantly
around the — 120° view.

Discussion

The main findings of this study are two-fold: firstly, that
the ability of monkeys to recognize a novel, three-
dimensional object depends on the viewpoint from
which the object is encountered, and secondly, that per-
ceptual object-constancy in the monkey’s recognition
system can be achieved by familiarization with a limited
number of views,

The first demonstration of strong viewpoint-dependence
in the recognition of novel objects was that of Rock and
his collaborators [8,9]. They examined the ability of
human subjects to recognize three-dimensional,
smoothly curved, wire-like objects seen from one
viewpoint, when encountered from a different attitude
and thus having a different two-dimensional projection
on the retina. Although their stimuli were real objects
(made from 2.5mm wire), and provided the subject
with full three-dimensional information, there was a
sharp drop in recognition for view disparities larger
than approximately 30° away from the familiar view. In
fact, as subsequent investigations showed, subjects
could not even imagine how wire objects look
when rotated further, despite instructions for visualizing
the object from another viewpoint (D. Wheeler,
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unpublished observations). Viewpoint-dependent recog-
nition was also shown in later experiments by Edelman
and Bilthoff [11,12] with computer-rendered, wire-like
objects presented stereoscopically or as flat images.

In this paper we provide evidence of similar view-
dependent recognition for the non-human primate.
Monkeys were indeed unable to recognize objects
rotated more than approximately 40° of visual angle
from a familiar view. Interestingly, training with a
limited number of views (about 10 views for the entire
viewing sphere) was sufficient for all the monkeys
tested to achieve view-independent performance. The
latter finding suggests that a system storing a small
number of shape representations at each of the experi-
enced orientations may accomplish view invariance by
comparing the input with the stored views or
combinations thereof.

These results are hard to reconcile with theories postu-
lating object-centered representations. Such theories
predict uniform performance across different object
views, provided three-dimensional information is
available to the subject at the time of the first
encounter. Therefore, one question is whether infor-
mation about the object’s structure was available to the
monkeys during the learning phase of these experi-
ments. We believe it was. First of all, wires are visible
in their entirety because, unlike most opaque natural
objects in the environment, the regions in front do
not substantially occlude regions in the back. Second,
the objects were computer-rendered with appropriate
shading and were presented in slow oscillatory
motion. The motion parallax effects produced by such
motion yield vivid and accurate perception of the
three-dimensioanl structure of an object or surface
[24,25]). In fact, psychometric functions showing depth-
modulation thresholds as a function of spatial
frequency of three-dimensional corrugations are very
similar for surfaces specified through either disparity
or motion parallax cues [26-28]. Furthermore, experi-
ments on monkeys have shown that, like humans,
non-human primates possess the ability to see
structure from motion [29] in random-dot kine-
matograms. Thus, during the learning phase of each
observation period, information about the three-
dimensional structure of the target was available to the
monkey by virtue of shading, the kinetic depth effect,
and the minimal self-occlusion.

Could the view-dependent behavior of the monkeys be
a result of their failing to understand the task? The
monkey could indeed recognize a two-dimensional
pattern as such, without necessarily perceiving it as a
view of an object. Correct performance around the
familiar view could then be explained simply as the
inability of the animal to discriminate adjacent views.
However, several lines of argument refute such an
interpretation of the obtained results.

First, human subjects who were tested for comparison
using the same apparatus exhibited recognition

performance very similar to that of the tested monkeys.
Second, when two views of the target were presented
in the training phase, 75-120° apart, the animals inter-
polated, often reaching 100% performance, for any
novel view between the two training views. Moreover,
for many wire-like objects, the monkey’s recognition
was found to exceed criterion performance for views
that resembled ‘mirror-symmetrical’, two-dimensional
images of each other, due to accidental lack of self-
occlusion. Invariance for reflections has been reported
earlier in the literature [21], and it clearly represents a
form of generalization.

Third, when the wire-like objects had prominent char-
acteristics, such as one or more sharp angles or a
closure, the monkeys were able to perform in a view-
invariant fashion, despite the distinct differences
between the two-dimensional patterns formed by
different views. Finally, the animals easily learned to
generalize recognition to all novel views of basic
objects. Once again it should be noted here that the
objects were considered ‘basic’ because of their largely
different shape from the distractors. Strictly speaking,
they were at the basic categorization level for the exper-
imenters’ recognition system. The monkeys had never
seen these objects before nor could they have had any
notion of a teapot or a space-ship (not shown in the
paper). So, their remarkable performance may be the
result of quickly learning (often within 10-20 minutes)
some characteristic features of the objects, for instance
the lid’s knob or the handle of the teapot, or some rela-
tionship between such features and a simple
geometrical shape, endowed with an axis of symmetry.

It is hardly surprising that the brain may have more
than one path to object recognition. Objects can occa-
sionally be identified just by their color or texture, or
because of the presence of a certain arrangement of
some kind of view-invariant volumetric primitives [7].
How, though, is view invariance achieved for the volu-
metric primitives themselves? And, how is invariance
accomplished for shapes that cannot be further decom-
posed? Recognition based entirely on fine shape
discriminations is not uncommon in daily life. We are
certainly able to recognize modern sculptures,
mountains, cloud formations, or simple geometrical
constructs with small variations in shape. Similarly, face
recognition is an ‘easy task’ for both humans and
monkeys, despite the great structural similarity among
individual faces. In all cases, in the initial stages of
learning, recognition may be view-dependent in the
same way that the monkeys’ performance for novel
objects was found to be in this study.

The ability of the humans and monkeys trained with
two views of an object to recognize only those views
situated between the two familiar, training views
suggests that recognition may indeed be accomplished
by a non-linear interpolation between stored represen-
tations. Such a system may rely on neurons in higher
cortical areas that are broadly tuned to object views,
which the subject has learned to recognize. The
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frequency of encounter of such units may directly
reflect the amount of exposure to a particular class of
objects.

Cells selective for complex patterns or views of faces
have been identified throughout the inferotemporal
cortex [30-33], a visual area that is known to be
essential for object vision. Patients with temporal lobe
lesions exhibit specific visuoperceptual deficits [34—38]
and a significant impairment in remembering complex
visual patterns [35-37,39}. Similarly, lesions to this area
in monkeys disrupt pattern perception and recognition
(40,41], while leaving thresholds for low-level visual
tasks unaffected. The experiments described here con-
stitute an initial step towards studying the role of this
area in acquiring view-invariant recognition.

Conclusions

Our results provide evidence supporting viewer-
centered object representation in the primate, at least
for subordinate level classifications. Although monkeys,
like human subjects, show rotational-invariance for
familiar, basic-level objects, they fail to generalize
recognition for rotations of more than 30-40° when fine
shaped-based discriminations are required to recognize
an object. The psychophysical performance of the
animals is consistent with the idea that view-based
approximation modules synthesized during training may
indeed be one of several algorithms that the primate
visual system uses for object recognition.

The visual stimuli used in these experiments were
designed to provide accurate descriptions of the three-
dimensional structure of the objects. Our findings are
therefore unlikely to be the result of insufficient depth
information in the two-dimensional images for building
a three-dimensional representation. Furthermore, they
suggest that construction of viewpoint-invariant repre-
sentations may not be possible for a novel object. Thus,
the viewpoint invariant performance of the subject
typically observed when recognizing familiar objects
may eventually be the result of a sufficient number of
two-dimensional representations, created for each expe-
rienced viewpoint. The number of viewpoints required
is likely to depend on the class of the object and may
reach a minimum for novel objects that belong to a
familiar class, thereby sharing sufficiently similar trans-
formation properties with other class members.
Recognition of an individual new face seen from one
single view may be such an example.

Materials and methods

Subjects and surgical procedures

Three juvenile rhesus monkeys (Macaca mulatta) weighing
7-9kg were tested. The animals were cared for in accor-
dance with the National Institutes of Health Guide, and the
guidelines of the Animal Protocol Review Committee of the
Baylor College of Medicine.

The animals underwent surgery for placement of a head
restraint post and a scleral-search eye coil [42] for
measuring eye movements. They were given antibiotics
(Tribrissen 30mgkg™) and analgesics (Tylenol 10mgkg™)
orally one day before the operation. The surgical
procedure was carried out under strictly aseptic conditions
while the animals were anesthetized with isoflurane
(induction 3.5% and maintenance 1.2-1.5%, at 0.8 Lmin™!
oxygen). Throughout the surgical procedure, the animals
received 5% dextrose in lactated Ringer’s solution at a rate
of 15mlkg'hr!. Heart rate, blood pressure and respiration
were monitored constantly and recorded every 15 minutes.
Body temperature was kept at 37.4° C using a heating pad.
Post-operatively, an opioid anelgesic was administered
(Buprenorphine hydrochloride 0.02mgkg™!, IM) every
6 hours for one day. Tylenol (10mgkg™1) and antibiotics
(Tribrissen 30mgkg™!) were given to the animal for 3-5
days after the operation.

Animal training

Standard operant conditioning techniques with positive
reinforcement were used to train the monkey to perform
the task. Initially, the animals were trained to recognize
the target’s zero view among a large set of distractors, and
subsequently they were trained to recognize additional
target views resulting from progressively larger rotations
around one axis. After the monkey learned to recognize a
given object from any viewpoint in the range of + 90°, the
procedure wias repeated with a new object. In the early
stages of training, several days were required to train the
animals to perform the same task for a new object. Four
months of training were required, on average, for the
monkey to learn to generalize the task across different
types of objects of one class, and about six months were
required for the animal to generalize for different object
classes.

Within an object class, the similarity of the targets to the
distractors was gradually increased, and, in the final stage
of the experiments, distractor wire-objects were generated
by adding different degrees of position or orientation noise
to the target objects. A criterion of 95% correct for several
objects was required to proceed with the psychophysical
data collection.

In the early phase of the animal’s training, a reward
followed each correct response. In the later stages of the
training, the animals were reinforced on a variable-ratio
schedule that administered a reward after a specified
average number of correct responses had been given.
Finally, in the last stage of the behavioral training, the
monkey was rewarded only after ten consecutive correct
responses. The end of the observation period was signalled
with a full-screen, green light and a juice reward for the
monkey.

During the behavioral training, independent of the rein-
forcement schedule, the monkey always received feedback
as to the correctness of each response. One incorrect
report aborted the entire observation period. During psy-
chophysical data collection, on the other hand, the monkey
was presented with novel objects and no feedback was
given during the testing period. The behavior of the
animals was monitored continuously during the data collec-
tion by computing on-line hit rate and false alarms. To
discourage arbitrary performance or the development of
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hand-preferences, for example giving only right hand
responses, sessions of data collection were randomly inter-
leaved with sessions with novel objects, in which incorrect
responses aborted the trial.

Visual stimuli

Wire-like and amoeba-like, spheroidal objects were
generated mathematically and presented on a color
monitor (Fig. 1). The selection of the vertices of the wire
objects within a three-dimensional space was constrained
to exclude intersection of the wire-segments and extremely
sharp angles between successive segments, and to ensure
that the difference in the moment of inertia between
different wires remained within a limit of 10%. Once the
vertices were selected, the wire objects were generated
by determining a set of rectangular facets covering the
surface of a hypothetical tube of a given radius that joined
successive vertices.

The spheroidal objects were created through the generation
of a recursively-subdivided triangle mesh approximating a
sphere. Protrusions were generated by randomly selecting
a point on the sphere’s surface and stretching it outward.
Smoothness was accomplished by increasing the number of
triangles forming the polyhedron that represents one pro-
trusion. Spheroidal stimuli were characterized by the
number, sign (negative sign corresponded to dimples),
size, density and sigma of the Gaussian-type protrusions.
Similarity was varied by changing these parameters as well
as the overall size of the sphere.
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