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Summary

Computer algorithms have been developed for early
vision processes that give separate cues to the distance
from the viewer of three-dimensional surfaces, their
shape, and their material properties. The MIT Vision
Machine is a computer system that integrates several
early vision modules to achieve high-performance rec-
ognition and navigation in unstructured environments. It
is also an experimental environment for theoretical
progress in early vision algorithms, their parallel imple-
mentation, and their integration. The Vision Machine
consists of a movable, two-camera Eye-Head input de-
vice and an 8K Connection Machine. We have developed
and implemented several parallel early vision algorithms
that compute edge detection, stereopsis, motion, texture,
and surface color in close to real time. The integration
stage, based on coupled Markov random field models,
leads to a cartoon-like map of the discontinuities in the
scene, with partial labeling of the brightness edges in
terms of their physical origin.
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introduction

It is increasingly clear that one of the keys to the reli-
ability, flexibility, and robustness of biological vision
systems in unconstrained environments is their ability to
integrate several visual cues. For this reason we are de-
veloping the Vision Machine system to explore the issue
of the integration of early vision modules. The system
also serves the purpose of developing parallel vision al-
gorithms, since its main computational engine is a par-
allel supercomputer—the Connection Machine (Hillis,
1985).

The idea behind the Vision Machine is that the
main goal of the integration stage is to compute a map
of the visible discontinuities in the scene, somewhat sim-
ilar to a cartoon or a line drawing. There are several
reasons for this. First, experience with existing model-
based recognition algorithms suggests that the critical
problem in this type of recognition is to obtain a reason-
ably good map of the scene in terms of features such
as edges and corners. The map does not need to be
perfect—human recognition works with noisy and oc-
cluded line drawings, and, of course, it cannot be per-
fect. But it should be significantly cleaner than the
typical map provided by an edge detector. Second, dis-
continuities of surface properties are the most important
locations in a scene. Third, we have argued that discon-
tinuities are ideal for integrating information from dif-
ferent visual cues (Poggio, 1985).

There are several different approaches to the
problem of how to integrate visual cues (Brooks, 1987;
Ullman, 1984; Hurlbert and Poggio, 1986; Mahoney,
1986). Our approach (Gamble and Poggio, 1987, Poggio
et al., 1988) assumes that the visual modules are coupled
to each other and to the image data in a parallel fashion
—each process represented as an array coupled to the
arrays associated with the other processes. This point of
view is in the tradition of Marr’s 2'%-dimensional sketch
(Marr, 1982), and especially of the “intrinsic images” of
Barrow and Tenenbaum (1978). Our present scheme is
of this type and exploits the machinery of Markov
random field (MRF) models.

The Vision Machine allows us to develop and test
an algorithm in the context of the other modules and
the requirements of the overall visual task—above all,
visual recognition. For this reason, the project is more
than an experiment in integration and parallel pro-



cessing: it is a laboratory for our theories and
algorithms.

In this paper we describe the Vision Machine system
and review the present hardware of the Vision Machine:
the Eye-Head system and the Connection Machine. We
introduce the vector model, a model of computation for
fine-grain machines such as the Connection Machine,
and describe in some detail each of the early vision algo-
rithms that are presently running and are part of the
system. After this, the integration stage is discussed. Fi-
nally, we analyze some results and illustrate the merits
and the pitfalls of our present system.

1. THE VISION MACHINE SYSTEM

The overall organization of the system is shown in
Figure 1. The image or images are processed through
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Fig. 1 Overall organization of the integration stage The
output of each early visual cue (o algorithm)—stereo, motion, texture, and color—is
coupled to its own line process (the crosses), that is, its discontinuities. Each is also
coupled to the discontinuities in the surface properties—occluding edges (both extremal
edges and blades), orientation discontinuities, specular edges, texture marks (including
albedo discontinuities), shadow edges. The image data—and especially the sharp
changes in brightness labeled here as edges—are input to the lattices that represent
the discontinuities in the physical properties of the surfaces. Before integration the
brightness edges may be completed (in some cases this may lead to “subjective
contours”) by the equivalent of a higher order MRF that reflects long-range constraints
of colinearity and continuation and even hypotheses from the recognition stage,
supposed to use the set of discontinuities at the bottom as its main input. Our present
implementation does not distinguish the different types of physical discontinuities: sharp
changes in brightness are directly coupled to the line processes of each of the cues.
The individual modules are therefore integrated with each other only indirectly, through
the brightness edges.

independent algorithms or modules corresponding to
different visual cues, in parallel. Edges are extracted
using Canny’s edge detector (Canny, 1986). Stereo
(Drumbheller and Poggio, 1986) computes disparity from
the left and right images. The motion module (Little,
Biilthoff, and Poggio, 1988) estimates the optical flow
from pairs of images in a time sequence. The texture
module computes texture attributes (such as density and
orientation of textons; Voorhees and Poggio, 1988). The
color algorithm provides an estimate of the spectral al-
bedo of the surfaces, independently of the effective illumi-
nation, that is, illumination gradients and shading effects,
as suggested by Poggio and staff (1985).

The measurements provided by the early vision
modules are typically noisy and possibly sparse (for
stereo and motion). They are smoothed and made
dense by exploiting known constraints within each pro-
cess (for instance, that disparity is smooth). This is a
stage of approximation and restoration of data, per-
formed by using a Markov random field model. Simul-
taneously, discontinuities are found n each cue. Prior
knowledge of the behavior of discontinuities is ex-
ploited: for instance, the fact that they are continuous
lines, not isolated points. Detection of discontinuities is
aided by the information provided by brightness edges.
Thus, each cue—disparity, optical flow, texture, and
color—is coupled to the edges in brightness.

The full scheme involves finding the various types
of physical discontinuities in the surfaces—depth dis-
continuities (extremal edges and blades), orientation dis-
continuities, specular edges, albedo edges (or marks),
shadow edges—and coupling them with each other and
back to the discontinuities in the visual cues, as lus-
trated in Figure 1. So far we have implemented only the
coupling of brightness edges to each of the cues pro-
vided by the early algorithm. As we discuss below, the
technique we use to approximate, to simultaneously de-
tect discontinuities, and to couple the different processes
is based on MRF models. The output of the system is a
set of labeled discontinuities of the surfaces around the
viewer. In our implemented version of the system we
find discontinuities in disparity, motion, texture, and
color. These discontinuities, taken together, represent a
“cartoon” of the original scene which can be used for



recognition and navigation (along with, if needed, inter-
polated depth, motion, texture, and color fields).

2. EYE-HEAD SYSTEM

The Eye-Head system consists of two cameras (“eyes”)
mounted on a variable-attitude platform (“head”). The
apparatus allows the cameras to be moved as a unit,
analogous to head movement. It also allows the lines of
sight of the cameras to be pointed independently, analo-
gous to eye movement. Each camera is equipped with a
motorized zoom lens (F1.4, focal length from 12.5 to 75
mm), allowing control of the iris, focus, and focal length
by the host computer (currently a Symbolics 3645 Lisp
Machine). Other hardware allows for repeatable calibra-
tion of the entire apparatus.

3. THE COMPUTATIONAL ENGINE: THE
CONNECTION MACHINE

The Connection Machine (Hillis, 1985) is a fine-grained,
single instruction, multiple data (SIMD) parallel com-
puter with between 8K and 64K processors (see Fig. 2).
Each processor is a one-bit serial processor, with 64K bits
of local memory, an 8 MHz clock, and optional floating
point hardware. All the processors are controlled by a
microcontroller, which receives macro instructions from
a front-end computer. The processors are organized
into a hypercube network with 16 processors at each
node (corner) of the hypercube. The wires of the hy-
percube network support the communication primitives
discussed in the following sections.

3.1 VECTOR MODEL

Early vision modules have been implemented using a set
of primitive parallel operations, including general per-
mutations, grid permutations, and the scan operation—
a restricted form of the prefix computation.

The model we use to describe the algorithms is a
vector model of computation (Blelloch, 1988). In a
vector model all the primitive operations are defined to
work on a vector of values. For example, we might have
a primitive that elementwise adds two vectors, or a prim-
itive that sorts a vector. A vector model is defined in
terms of a set of primitive operations that require
vectors as input and return vectors as output. A vector is
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Fig. 2 Block diagram of
the Connection
Machine

an ordered set of simple values, such as integers,
floating point, or Boolean values. Each element of a
vector has an index. »

Each elementwise primitive operates on equal-
length vectors, producing a result vector of equal length.
The element 7 of the result is an elementary arithmetic
or logical primitive (such as +, —, *, or and not) applied
to element i of each of the input vectors.

The permutation primitive takes two vector argu-
ments: a data vector and an index vector. The permutation
primitive permutes each element in the data vector to
the location specified in the index vector. It is an error
for more than one element to have the same index—
the permutation must be one-to-one. An example of a
permutation:

Index =[01234567 8 9]
Data =[grotishmal
1 =[24365978 0 1]
permute(Data,I)=[algorithms]




The combining primitives also take a data vector and an
index vector, but they allow many-to-one mappings: the
indices need not be unique. Values with the same index
are combined using a binary associative operator. Valid
binary operations include +, maximum, minimum, and
or, generating combine operations +-combine, max-
combine, min-combine, and or-combine. The following
example diagrams some combining primitives:

[01234567]
[51343926]
[254316305]

Index
Data
1

o

+-combine(Data, I) =[03563790]
max-combine(Data, ) = [03 54369 0]

To allow communication between vectors of different
sizes, we include a version of the permute primitive that
returns a vector of different length than the source
vectors. This version takes two extra arguments: one
that specifies the length of the destination, and another
vector that specifies which elements appear in the result.

A grid permutation maps a vector onto a grid and
permutes elements to the closest neighbor in some direc-
tion on the grid.

3.2 SCAN PRIMITIVES

The scan primitives execute a scan operation, sometimes
called a prefix computation (Ladner and Fischer, 1980;
Kruskal, Rudolph, and Snir, 1985), on a vector. The
scan operation takes a binary associative operator @, and
a vector [ag, @y, - - - , @y —1] Of n €lements, and returns the
vector [ag(ao D ay), ..., @D a, @ ... Da,_)] The op-
erators for the scan primitives include maximum, min-
imum, or, and and, generating scan operations termed
+-scan, max-scan, min-scan, or-scan, and and-scan.
Some examples:

A =513 4 3 9 2 6]
+-scan(A) =[569 13 16 25 27 33]
max-scan(A)=[555 5 5 9 9 9]

The grid scan primitives are analogous to the vector
scans but operate on a grid ordering instead of the

vector ordering: each column or row can be viewed as a
vector.

3.3 GLOBAL PRIMITIVES

The global primitives reduce the values in a vector using
a binary associative operator. As with the scan and com-
bine primitives, we only use the operators +, max-
imum, minimum, or, and, and first. Some examples:

A
+-reduce(A) 3
max-reduce(A) = 9

[51343926]
3

([l

The global primitive can be implemented with either a
scan or a combine operation.

3.4 SEGMENTED PRIMITIVES

A vector can be broken into contiguous segments in
which the beginning of each segment is marked with a
flag. For example:

A =[513439 26
Segment-Flags = [T F TFF F T F]
[51]1[34 3 9][26]

We can define segmented versions of both the permuta-
tion primitives and the scan primitives that work inde-
pendently within each segment. A description of the use
of segments can be found in Blelloch (1988).

3.5 PRIMITIVES ON THE

CONNECTION MACHINE

All primitives just described are implemented on the
Connection Machine. The wires of the hypercube in the
Connection Machine are shared by the grid permutation
primitives, the scan primitives, and the permutation and
combine primitives.

The Connection Machine (CM) supports a virtual
vector machine by distributing the elements of a vector
across the processors. When using a vector of length m
on an n processor CM, [m/n] vector elements are placed
in the memory of each processor. Each processor is re-
sponsible for the vector elements in its memory. The



mapping of vectors onto processors is supported in mi-
crocode and is transparent to the user.

The elementwise vector primitives are implemented
on the CM by loading an element of each argument
vector from the memory of each processor into the pro-
cessor, operating on these elements, and storing the re-
sult back to memory. Elementwise primitives never re-
quire communication among processors. When there
are many elements per processor, each processor loops
over all of its elements.

The vector permutation primitives and the vector
combining primitives are supported by the routing
hardware of the Connection Machine. The router uses a
packet-switched message-routing scheme that directs
messages along the hypercube wires to their destina-
tions. The combine primitives are supported with com-
bining router switches similar to those suggested for the
NYU Ultracomputer (Gottlieb, Lubachevsky, and Ru-
dolph, 1983).

Vector permutations, which take O(1) time in the
vector model, are simulated on the Connection Machine
in O(log n) time with high probability. As with the ele-
mentwise primitives, when there are more vector ele-
ments than processors, the CM loops over the elements
in each processor.

The grid permutations are supported on the CM
using the same hypercube wires as the router. Each di-
mension of a grid is placed in gray code order with re-
spect to the hypercube ordering, so that neighboring
grid elements are separated by a single wire. Because of
this ordering, the grid permutation primitives are signif-
icantly faster than the general permutation primitive.

The scan vector primitives are implemented on the
CM using a binary tree algorithm. This algorithm uses
the same wires as the router but does not use the
routing hardware. The scan primitives take O(log n)
time and, in practice, are usually faster than the general
permutation primitive. Grid scans are implemented in a
similar way: a tree is used for each row or each column.

3.6 ROUTINES AND ALGORITHMS IN THE
VECTOR MODEL

The primitives described above simplify implementing
more complex manipulations of data structures. We

have devised a set of routines, functions composed of
the various primitives, that themselves form important
building blocks for vision algorithms. These routines in-
clude pointer jumping, ordering, region summation,
outer product, and histogram computation. More details
on the structure of the primitives, the routines, and their
use in general early and middle vision algorithms can be
found in Little, Blelloch, and Cass (1987a, 1987b, 1989).

For example, one simple routine, termed region
summation, uses grid scans. Region summation sums, at
each pixel in a grid, a 2m + 1) X (2m + 1) square re-
gion around the pixel. This procedure can be imple-
mented using a constant number of grid scans and per-
mutations in the vector model. Several iterative local
operations, such as boxcar convolution, can be efficiently
implemented using region summation; the stereo and
motion modules also use region summation.

In early visual processing, the image maps directly
onto the grid coordinate system in the vector model.
This processing involves many operations that use either
elementwise parallel or grid operations, where the com-
putation at each pixel depends only on points adja-
cent in the grid. The classic example is filtering and
convolution.

The data structures of middle vision are dependent
on image content, for example, linked edges, and there-
fore usually depend more on arbitrary communication
patterns. Computation of image features often requires
communication patterns that follow arbitrary paths
through the image grid, depending on local image
structure. To link edge elements, for example, a proce-
dure must access elements in a direction perpendicular
to the image brightness gradient. Permutation opera-
tions fit this task well by facilitating efficient algorithms
based on pointer jumping. High-level vision processes,
such as recognition, utilize more abstract representations
that do not necessarily operate in the image coordinate
system. They typically use permutation and scan
primitives.

4. EARLY VISION MODULES

4.1 STEREO

The parallel stereo algorithm of Drumheller and Poggio
(1986) is implemented in the Vision Machine. Disparity




data produced by the algorithm constitutes one of the
inputs to the MRF-based integration stage of the Vision
Machine. The stereo algorithm runs on the Connection
Machine systern with good results on natural scenes in
times that are typically on the order of 1 second.

Stereo matching is an ill-posed problem (Bertero,
Poggio, and Torre, 1987) that cannot be solved without
taking advantage of natural constraints. The specific a
priori assumption on which the algorithm is based is that
the disparity—that is, the depth of the surface—is lo-
cally constant in a small region surrounding a pixel. It is
a restrictive assumption that may, however, be a satisfac-
tory local approximation in many cases (it can be ex-
tended to more general surface assumptions in a
straightforward way but at high computational cost). Let
E;(xy) and Eg(xy) represent the left and the right
images of a stereo pair or some transformation of it,
such as filtered images or a map of the zero-crossings in
the two images (more generally, they can be maps con-
taining a feature vector at each location (xy) in the
image).

We look for a discrete disparity d(x,y) at each loca-
tion x,y in the image that minimizes

|EL(xy) — Erlx + dxy)))lpey ()

where the norm is a summation over a local neighbor-
hood patch, P, centered at each location (x,y); d(x,y) is
assumed constant in the neighborhood. Equation 1 im-
plies that we should look at each (x,y) for d(x,y) such that

[ Eunute + desyg)yay @
Pxy)
is maximized.

The algorithm that we have implemented on the
Connection Machine is actually somewhat more compli-
cated, since it involves geometric constraints that affect
the way the maximum operation is performed (Drum-
heller and Poggio, 1986). The implementation currently
used in the Vision Machine at the MIT Artificial Intelli-
gence Laboratory uses maps of Canny’s edges (Canny,
1986) obtained from each image for E; and Ep.

In more detail, the algorithm is composed of the
following steps:

1. Compute features for matching.

2. Compute potential matches between features.

8. Determine the degree of continuity around each
potential match.

4. Choose correct matches based on the constraints of
continuity, uniqueness, and ordering.

The computational requirements of the stereo algo-
rithm are essentially local. Feature computation is ele-
mentwise, or depends only on filtering, which is local.
The stereo matching problem is one-dimensional (when
epipolar lines coincide with image rows); matches are
found while sliding the right image over the left image
horizontally, computing a set of potential match planes,
one for each horizontal disparity. To determine the de-
gree of continuity around each potential match, we
compute a local support score, using region summation.
Finally, we select matches by comparing the local match
sums, over a set of possible matches determined by geo-
metric constraints.

4.2 MOTION

Computing the displacement in the image of moving el-
ements is very similar to stereo computation, but the
range of displacements is two-dimensional, not one-di-
mensional. We use a parallel motion algorithm (Little et
al., 1988) modeled on the Drumheller-Poggio stereo al-
gorithm. The algorithm produces dense displacement
fields from the moving images, together with direct cues
for the location of occluding boundaries of scene objects.
Its computational requirements are similar to those of
stereopsis, although necessarily higher, since the number
of displacements considered can be larger.

4.3 TEXTURE

The texture algorithm is a greatly simplified parallel
version of the texture algorithm developed by Voorhees
and Poggio (1988). It measures the level density of
“blobs” extracted from the image through a filtering
process involving center-surround filters with appro-
priate size and threshold. It utilizes only filtering opera-
tions to extract features, “blobs,” and region summation
operations to estimate densities.



4.4 COLOR

The color algorithm provides a local measure of hue,
H = (R)(R;; + Gy, where R and G are the measure-
ments in the red and green channels, respectively, of a
digital color camera. Under certain conditions (Hurlbert,
see Poggio and staff, 1985), this ratio is independent of
illumination and three-dimensional shape. The color
computation uses only local computations.

5. INTEGRATION

It is reasonable to assume that combining the evidence
provided by multiple visual cues—for example, edge
detection, stereo, and color—should provide a more re-
liable map of the objects in a visual scene than any single
cue alone, but it is not obvious how to accomplish this
integration. One of the most important constraints for
recovering surface properties from each of the indi-
vidual cues is that the physical processes underlying
image formation, such as depth, orientation, and reflec-
tance of the surfaces, change slowly in space (adjacent
points on a surface are not at random depths, for in-
stance). Standard regularization (Poggio and Torre,
1984; Bertero, Poggio, and Torre, 1987; Poggio, Torre,
and Koch, 1985), on which many examples of the early
vision algorithms are based, captures these smoothness
properties well. The physical properties of surfaces,
however, are smooth almost everywhere, but not at dis-
continuities. Reliable detection of discontinuities of the
physical properties of surfaces is critical for a vision
system, since discontinuities are often the most impor-
tant locations in a scene: depth discontinuities, for ex-
ample, normally correspond to the boundaries of an ob-
ject. Thus, the output of each vision module has to be
smoothed and interpolated (that is, “filled-in”), since it is
noisy and often sparse; at the same time discontinuities
must be simultaneously detected.

Discontinuities can also be used effectively to fuse
information between different visual cues (Poggio, 1985;
Gamble and Poggio, 1987; Hutchinson et al., 1988;
Poggio and staff, 1987) and the image data (see also
Chou and Brown, 1987a, 1987b, 1988). For instance, a
depth discontinuity usually produces a sharp change of
brightness in the image (usually called a brightness edge);
and a motion boundary often corresponds to a depth

discontinuity (and a brightness edge) in the image. The
idea is thus to couple different cues—stereo, motion,
texture, and color—to the image data (in particular to
the sharp changes of brightness in the image) through
the discontinuities in the physical properties of the sur-
faces (see Fig. 1) (Barrow and Tenenbaum, 1978). The
final goal of this approach is to use information from
several cues simultaneously to refine the initial estima-
tion of surface discontinuities. We will describe a first
step in this direction that combines brightness edges with
discontinuities in each of the modules separately.

How can this be done? We have chosen to use the
machinery of Markov random fields (MRFs), initially
suggested for image processing by Geman and Geman
(1984). (For alternative approaches, see Hoff and Ahuja,
1987; Blake and Zisserman, 1987; Aloimonos and
Brown, 1987; Cohen and Cooper, 1983.) Consider the
prototypical problem of approximating a surface given
sparse and noisy data (depth data), on a regular two-
dimensional lattice of sites (Fig. 3). We first define the
prior probability of the class of surfaces in which we are
interested. The probability of a certain depth at any
given site in the lattice depends only upon neighboring
sites (the Markov property). Because of the Clifford-
Hammersley theorem, the prior probability has the
Gibbs form:

_un
T

P(f) = , 3)

e

N -

where Z is a normalization constant, T is called tempera-
ture, and U(f) = SU{f) is an energy function that can
be computed as the sum of local contributions from
each lattice site 7. The energy at each lattice site U(f) is,
itself, a sum of the potentials, Uc(f), of each site’s cliques.
A dique is either a single lattice site or a set of lattice
sites such that any two sites belonging to it are neighbors
of one another (Gamble and Poggio, 1987; Marroquin,
Mitter, and Poggio, 1985). As a simple example, when
the surfaces are expected to be smooth (like a mem-
brane), the prior energy can be given in terms of

v = 3 i~ 5 @
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Fig. 3 Coupled MRF
lattices The circles represent the
continuous process (either depth,
motion, color, or texture), and the lines
represent the associated line process,
that is, the discontinuities. The
neighborhoods of the depth process
and of the line process are aiso
shown. The cost of an isolated line
process is much higher than that of a
continuous line.

where j is a neighboring site to i (that is, 7 and j belong to
the same clique).

If a model of the observation process is available
(that is, a model of the noise), then one can write the
conditional probability P(g|f) of the sparse observation g
for any given surface . Bayes's theorem then allows one
to write the posterior distribution:

o ®)

1
P(flgp = Z¢

In the example of Eq.(4), we have (for Gaussian
noise):

Uflo) = X (i = * + wnlfi = &0* ®)
J

where ; = 1 only where data are available, and other-
wise y; = 0. More complicated cases can be handled in a
similar manner (Gamble and Poggio, 1987).

The maximum of the posterior distribution or other
related estimates cannot be computed analytically, but
sample distributions with the probability distribution of
Eq.(5) can be obtained by means of Monte Carlo tech-
niques such as the Metropolis algorithm (Metropolis et
al., 1953). These algorithms sample the space of possible
surfaces according to the probability distribution P(f|g)
that is determined by the prior knowledge of the al-
lowed dlass of surfaces, the model of noise, and the ob-
served data. In our implementation, the Connection
Machine generates a sequence of surfaces from which,
for instance, the surface corresponding to the maximum
of P(f]g) can be found. This corresponds to finding the
global minimum of U(f]g) (simulated annealing is one of
the possible techniques). Other criteria can be used:
Marroquin (1985) has shown that the average surface /
under the posterior distribution is often a better estimate
that can be obtained more efficiently simply by finding
the average value of f at each lattice site.

One of the main attractions of MRF models is that
the prior probability distribution can be made to embed
more sophisticated assumptions about the world. Geman
and Geman (1984) introduced the idea of another pro-
cess, the line process, located on the dual lattice (see Fig.
3), and representing explicitly the presence or absence
of discontinuities that break the smoothness assumption
(Eq:4). The associated prior energy then becomes

USRD = 3 (= 20 = 1) + BVe @, ™
J

where i is a binary line element between site ¢, j. The
term V(li) reflects the fact that certain configurations of
the line process are more likely than others to occur.
Depth discontinuities are usually themselves continuous,
nonintersecting, and rarely isolated points. These prop-
erties of physical discontinuities can be enforced locally
by defining an appropriate set of energy values Ve



for different configurations of the line process (Gamble
and Poggio, 1987; Geman and Geman, 1984; Marro-
quin et al., 1985).

It is possible to extend the energy function of Eq.(7)
to accommodate the interaction of more processes and
of their discontinuities. In particular, we have extended
the energy function to couple several of the early vision
modules (depth, motion, texture, and color) to sharp
changes of brightness in the image. This is a central
point in our integration scheme: here we assume that
changes of brightness guide the computation of discon-
tinuities in the physical properties of the surface, thereby
coupling surface depth, surface orientation, motion, tex-
ture, and color, each to the image brightness data and to
each other. The reason for the primary role of the gra-
dient of brightness, as conjectured here, is that changes
in surface properties usually produce large brightness
gradients in the image.

The coupling to high brightness gradients may be
done by replacing the term V() in the last equation
with the term

ViLe) = glei.l), ®)

where ¢ represents a measure of the strength of the
brightness gradient (that is, of a brightness edge) be-
tween site 4, j. The term g has the effect of modifying
the probability of the line process configuration de-
pending on the brightness edge data; for instance,
glei, ) = ei(1 — li). This term facilitates formation of
discontinuities (that is, /i = 1) at the locations of sharp
brightness changes, without restricting them to bright-
ness edges. High values of the brightness gradient (to-
gether with image data in the neighborhood) activate
with different probabilities the different types of surface
discontinuities (see Fig. 1), which in turn are coupled to
the output of stereo, motion, color, texture, and possibly
other early vision algorithms.

6. AN EXAMPLE

We have been using the MRF machinery with prior en-
ergies like those given in Eq.(7) and Eq.(8) (see also Fig.
1) to integrate edge brightness data with stereo, motion,
color, and texture information on the MIT Vision Ma-
chine system.

Figure 4 shows the inputs to the integration stage:
the gray-level image and the associated brightness edges.
Figure 5 shows the results of integrating brightness
edges with a parallel stereo algorithm (Drumheller and
Poggio, 1986). In a similar way (Fig. 6), the optical flow
and its boundary from the same scene are computed
from motion data (Little et al., 1988) and brightness
edges (Gamble and Poggio, 1987; Hutchinson et al.,

Fig. 4 (a) Gray-level
image; (b) associated
brightness edges as
computed with a parallel
implementation of
Canny’s algorithm




1988; Murray and Buxton, 1987; Yuille, 1987). Figures
7 and 8 show simple examples of a similar integration
performed with texture and color data. A MRF model
that enforces local constancy of the hue H uses the
dense but noisy data from the color module to segment
the image into regions of different constant reflectance
(Poggio et al., 1988). The coupling with brightness edges
facilitates finding the boundaries: usually sharp changes

Fig. 5 (a) Brightness edges used with stereo; (b) stereo
data; (c) reconstructed surface depth; (d) depth
discontinuities found by the MRF integration scheme
using brightness edges

in the ratio H correspond to a subset of the brightness
edges.

The union in Figure 9 of the discontinuities in
depth, motion, and texture for the scene of Figure 4
gives a “cartoon” of the original scene. Notice that this
“cartoon” represents discontinuities in the physical prop-
erties of three-dimensional surfaces that are well de-
fined, whereas brightness “discontinuities” are not.



Fig. 6 (a) Brightness edges used with motion; (b) motion

data; (c) the MRF reconstructed flow; (d) motion
discontinuities

Discussion

Our integration algorithm achieves a preliminary classifi-
cation of the brightness edges in the image, in terms of
their physical origin. A more complete classification may
be achieved by implementing the full scheme of Figure
1. The lattices at the top classify the different types of
discontinuities in the scene: depth discontinuities, orien-
tation discontinuities, albedo edges, specular edges, and
shadow edges. The set of such discontinuities in the

various physical processes seems to represent a good set
of data for later recognition. In preliminary experiments
we have successfully used a parallel, model-based recog-
nition system (Cass, 1988) on the discontinuities (stereo
and motion) provided by our MRF scheme. We plan to
exploit the labeling of discontinuities in future recogni-
tion experiments. In addition, our integration scheme
allows us to segment the scene into different depth
planes, for instance, thereby considerably reducing the
combinatorics of model-based recognition.




Fig. 7 (a) Brightness edges used with texture; (b) texture
data; (c) reconstructed uniform texture regions; (d)
texture discontinuities

Our present implementation represents a subset of
the possible interactions shown in Figure 1, itself only a
simplified version of the organization of the likely inte-
gration process. As described elsewhere (Poggio et al.,
1988; Gamble and Poggio, 1987), the system will be im-
proved in an incremental fashion, including pathways
not shown in Figure 1, such as feedback from the results
of integration into the matching stage of the stereo and
motion algorithms.

Our formulation of the integration problem in
terms of MRF does not imply that the algorithms are
necessarily stochastic. Deterministic approximations to
the more general stochastic schemes may work quite
well, especially in situations where redundant and con-
tradictory data from several sources effectively set the
initial state of the system close to the solution. We have,
in fact, found that gradient descent in the space of
the depth and the line process often works well. We



Fig. 8 (a) Brightness edges used with color; (b) color

data (hue); (c) the MRF segmentation in terms of constant

reflectance regions; (d) color boundaries

routinely use a mixed deterministic and stochastic
strategy (Marroquin et al., 1985) in which the contin-
uous (depth) process is deterministically updated while
the line process is updated stochastically. Other strategies
may also be effective (Chou and Brown, 1987a), such as
space-variant filtering, coupled with edge detection. In
addition, time-dependent schedules of the coupling pa-
rameters can be useful. They are somewhat similar to
simulated annealing, which can also be effectively used,
though it is quite slow.

The highly parallel algorithms we have described
map quite naturally onto an architecture such as the
Connection Machine. The vector model used on the
Connection Machine elucidates the structure of the
computations in all the algorithms. The MRF integra-
tion stage, in particular, has a quite simple structure.
The energies computed at each step of the process de-
pend only on the local configuration of the data and the
line processes, and thus require little data communica-
tion. The implementation of the integration stage on the




'Fig. 9 Union of the
depth, motion, and
texture discontinuities: a
preliminary classification
of the brightness edges
in the image, in terms of
their physical origin

Connection Machine is quite efficient. The same algo-
rithms also map onto VLSI architectures of fully analog
elements (we have successfully experimented with a ver-
sion of Eq.(7) and Eq.(8), in which [ is a continuous vari-
able), mixed analog and digital components, and purely
digital processors (similar to a much simplified and spe-
cialized Connection Machine).

A plausible organization of visual integration as
sketched in Figure 1 may be found ultimately by theory
and by computer experiments of the type described
here. We believe that psychophysical and physiological
data about the integration stage in the mammalian visual
system may be helpful in guiding our theoretical and
computational work. The system described here has al-
ready triggered a series of psychophysical experiments
in order to establish whether and how brightness edges
aid human computation of surface discontinuities
(Heinrich Biilthoff, personal communication).
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