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In a theoretical study of the passive cable properties of dendritic spines
Kawato & Tsukahara (1983) claim to have proved that “the dendritic spine
has no significant electrical function” (from their discussion). However,
Kawato & Tsukahara restrict their analysis to current inputs to spines.
Since the dimensions of spines are very small, their input resistance is
expected to be very large and the synaptic input to spines has to be modeled
as conductance change. Under this assumption, spines show interesting
(non-linear) electrical properties: i) the somatic potential induced by an
excitatory synapse on a spine may depend strongly on the shape of the
spine and ii) the effect of inhibition might be confined to the spine.

Kawato & Tsukahara (1983) consider the somatic potential induced by a
synapse injecting current into a passive dendritic spine. They show for
current inputs that under realistic assumptions of membrane parameters
and dendritic spine dimensions the attenuation from the spine head to the
dendritic stem below the spine can be neglected. Therefore, the authors
conclude, dendritic spines do not have any interesting electrical function.
However, while their specific result is correct, their general conclusion is
not warranted and is in general wrong. Due to the small dimensions of the
spine, their input resistance is expected to be quite high, easily surpassing
200 M. Therefore, as we have specifically pointed out before (Koch &
Poggio, 1983a,b) it is inappropriate to approximate the synaptic input as
current. If one considers conductance changes as synaptic inputs, spines
do show a variety of interesting non-linear properties, a point emphasized
by various authors (Diamond, Gray & Yasargil, 1970: Rall, 1974, 1978;
Jack, Noble & Tsien, 1974; Crick, 1982; Koch & Poggio, 1983a,b; Horwitz,
1983; Perkel, 1983). In particular, due to the strong dependence of the
somatic weight of spines on their shape, they could serve as a locus for
short- and long-term memory.
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In order to analyse the electrical properties of dendritic spines on the
basis of passive cable theory, Kawato & Tsukahara use a mathematical
technique developed by Butz & Cowan (1974) that generates a closed
expression of the voltage in arbitrary dendritic structures as a function of
synaptic current inputs. Modeling a spine by a very short cylinder with a
sealed end, they derive the expression PSP, in.(t) denoting the somatic
depolarization caused by a synapse injecting current into a spine. If the
same current is injected at the base of the spine, the potential PSPgp(t) is
induced at the soma. Comparing these two expressions, Kawato & Tsukahara
define the function h(t) describing the attenuation effect of a spine.
PSP, ;i,.(t) can now be represented as the convolution of PSPgp(t) with
h(t). Therefore, if one can show that h(t) is very much shorter than the
duration of PSPgp(t), h(1) can be approximated by a delta function and
all of the current injected into the spine reaches the dendritic stem. Using
the Butz & Cowan graphical calculus and electrical circuit theory, Kawato
& Tsukahara prove in a mathematical tour de force that h(t) can indeed
be approximated by 8(t).

Without considering the range of validity of the current input case, the
authors conclude that both the attenuation and the isolation effect of the
spine can be neglected and that a morphological change of the spine only
leads to negligible changes in somatic potential. This conclusion is, in
general, incorrect.

In our analysis of the biophysical properties of dendritic spines, we also
used a technique based on basic properties of the Green function of a linear
branched cable (to compute numerically the transfer function in extended
dendritic trees we likewise used the Butz & Cowan algorithm). Modeling
a spine by a thin and long cylindrical spine neck (of length Iy and diameter
dy) and a shorter and stubbier cylindrical spine head we first consider the
linear properties of spines; i.e. the properties for current inputs and passive
membrane. Neglecting the very small current losses through the membrane
of the spine neck and for a broad range of membrane parameters, we derived
an approximated expression for the spine input impedance

Kii(0) = (Kn(w)+Ry)/ (1 +i07) (1

where Ko.(w) is the input impedance of the dendritic stem just below the
spine neck as a function of frequency w, Ry is the ohmic resistance of the
spine neck cylinder (Ry = 4RIN/ wd%,), and 7, = RyCy, is the time constant
of the spine (R; is the specific intracellular resistivity and Cy the total
capacity of the spine head). Thus the spine input resistance equals the
dendritic shaft input resistance plus the spine neck resistance filtered by a
low pass filter. In the time domain the above expression is equivalent to a
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convolution of (K,,(t)+ Ry) with 7;' exp™"/". For a reasonable range of
parameter values (see Koch & Poggio 1983b) 7, is three to four orders of
magnitude smaller than the time constant ,, of the neuron (while 7,, has
a typical value of some tens of msec 7, lies in the wsec range). Therefore
we conclude similar to Kawato & Tsukahara, that this function can be
approximated by a delta function and

Izls(w)zkls(w) (2)

where K,,(w) (resp. IZZS(w)) is the transfer impedance between the spine
head (resp. the dendritic stem just below the spine) and the soma (see in
particular equations (7) to (10) in Koch & Poggio, 1983b). In other words,
for a current input the depolarization at some location in :..> dendritic tree
(for instance the soma) is the same, irrespectively of whetlier the synapse
is on the spine or directly on the dendrite (Koch & Poggio, 1983b). This
result is easy to understand without much calculation: since the membrane
surface of the spine is minute (= 1 pm?), essentially no current flows through
the spine membrane. Thus all the current injected in the spine head reaches
the dendrite.

Synaptic inputs, however, consist of transient conductance changes to
specific ions and cannot in general be approximated by currents. Synaptic
inputs effectively open ‘holes’ in the membrane for ions with a reversal
potential E measured with respect to the local resting potential. Restricting
ourselves to steady state conductance changes g (for the full, transient case
see Rall & Rinzel, 1974; Koch & Poggio, 1983b or Perkel, 1983), the change
in somatic potential is given by

v, = 8KuE 3)
1+gK;,
where K, is the steady state spine input resistance. If g is small with respect
to the spine input resistance, the term gK;, in the denominator can be
neglected and the input can be approximated as current input gFE. In the
more general case, we make use of equation (1)

gK]sE

V= 4
1+g(Kn+Ry) “)

We calculated the electrical properties of spines on the basis of measure-
ments made on a Golgi-stained pyramidal cell, implementing the Butz &
Cowan calculus in a computer program which determines the potential at
location i if a transient conductance input is applied at location j. If one
assumes R,, =8000 Q cm?®, C,, =1 wF cm™ and R; =70 Q cm, the dendritic
input resistance varies between 30 and 150 MQ, depending on the location
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within the apical tree. If the neck of the spine is assumed to be 1 pm long
and 0-1 pm thick the neck resistance Ry is equal to 87 MQ. Increasing the
spine neck length and decreasing its diameter can increase the spine neck
resistance up to 1000 MQ. The actual size of the conductance change at a
synapse is an open question, though a value between 107® and 107°S is not
unreasonable. For the change in conductance underlying a quantal EPSP,
Barrett & Crill (1974) give an estimate of 8-19. 10™° S in cat motoneurones
and Turner (1984) a value of 2. 107 S in hippocampal granule cells. Within
this range of synaptic input amplitudes, the input cannot be considered as
current but must be modeled as conductance change. Figure 1 shows the
somatic depolarization induced by a synaptic conductance change of varying
amplitude on a distal spine of our pyramidal cell as a function of the
dimension of the spine neck. If the synaptic amplitude is above a critical
value (in this case approximately given by 5. 107°S) the somatic weight of
the spine depends strongly on its dimension. This strong dependence could
be the biophysical mechanism underlying the short- and long-term storage
of information (see Rall, 1974, 1978; Jack et al., 1974; Crick, 1982).
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FiG. 1. The change in somatic potential for small, medium and large steady state synaptic
conductance inputs on a dendritic spine of a cortical pyramidal cell with varying neck
dimensions. The assumed reversal potential E is 80 mV relative to the resting potential. The
spine neck dimensions were changed in such a way as to leave the total neck surface area
constant and equal to 0-1 pm? (although this is not required). Plausible changes in neck length
(from 0-8 to 1-6 wm) could alter the “weight” of the synapse by a factor of 3 (from Koch &
Poggio 1983b).

A second interesting non-linear property of spines that depends on the
input being a conductance change is the possibility of a very specific veto-like
synaptic operation between excitatory and inhibitory inputs that can occur
within the same spine, without inhibition affecting the ongoing electrical
activity in the rest of the cell (see Fig. 7 in Koch & Poggio, 1983b). Inhibition
would effectively only shunt excitation localized onto the same spine (for
a similar suggestion see Diamond et al, 1970).
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