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We present an efficient algorithm for solving the one-dimensional cable equation in the Laplace
(frequency) domain for an arbitrary linear membrane. This method, a reformulation and extension of the
geometrical calculus developed by Butz and Cowan (1974), solves for the transfer impedance between any
two points in a branched cable structure of arbitrary geometry (but without loops) by the repetitive
application of four simple equations. Such an algorithm is used to analyze the electrical behaviour of
nerve cells with highly branched dendritic trees. The algorithm can be implemented using a language such
as C, PASCAL or LISP and runs on small machines.

Introduction

The dendritic trees of different types of nerve cells can have very different -
morphologies. A case in point are the histological classes of ganglion cells in the cat
retina (o, B, y and 8; see Boycott and Wassle, 1974). To understand how the
dendritic morphology and the synaptic architecture influence the function of a
neuron, it is important to calculate the effect of an active synapse on the membrane
potential at the dendrite and at the soma. Such a study was initiated by Rall and
co-workers (for a review see Rall, 1977) who investigated the solution of the
cylindrical cable equation for different cable configurations. He discovered (1964)
that under certain conditions (the diameters of the branches must satisfy the
so-called d*/% law), a whole dendritic tree can be reduced to a single cylinder, called
the equivalent cylinder, greatly simplifying the problem. The d 3/2 law, however, does
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not hold for a variety of neurons such as hippocampal pyramidal cells (Turner and
Schwartzkroin, 1980), the a-motoneurons (Barrett and Crill, 1974) and retinal
ganglion cells (Koch et al., 1982). Another way of analyzing extended neuronal
structures is to segment the structure into small, lumped compartments, assumed to
be electrically homogeneous, and to calculate the potential within each compartment
(Rall, 1964; Perkel et al., 1981). This method suffers from the drawback that the
required numerical calculations are computationally expensive. In addition, the
solution represents only a discrete approximation to the continuous equation.
Therefore, an efficient method for computing voltage transients in arbitrary struc-
tures is desirable. Butz and Cowan (1974) were able to derive an elegant geometrical
calculus for the investigation of branching dendritic structures of arbitrary geometry
by representing a cable with its passive membrane in the Laplace domain and
solving for the transfer function K, (w). Knowledge of the transfer-function allows
one to compute the voltage response to arbitrary current inputs. We have imple-
mented their method on a computer and applied it to an analysis of cat retinal
ganglion cells to elucidate the relation between the dendritic morphology and the
known electrical function of these cells (Koch et al., 1982, 1983) and to an analysis
of the functional significance of dendritic spines (Koch and Poggio, 1983). We
generalized Butz and Cowan’s method to include cables with an arbitrary linear
membrane impedance (Koch, 1984). This is useful, since the electrical properties of a
variety of cells like the lamprey giant interneurons (Moore and Christensen, 1984),
the rod photoreceptors in the retina (Detwiler et al., 1980; Torre and Owen, 1983),
the hair cells of the cochlea (Crawford and Fettiplace, 1981) and the transverse
tubular membrane of skeletal muscle (Moore and Tsai, 1983) can be modeled by a
membrane consisting of inductance-like components arising from small signal lin-
earization of time and voltage dependent conductances.

We report here an equivalent but simpler algorithm which permits the automatic
computation of the transfer function in cable structures with arbitrary geometry and
a generalized linear membrane by the recurrent application of four elementary
equations. This algorithm is conceptually less complex and, if implemented recur-
sively, more efficient in terms of computation time than our implementation of the
Butz and Cowan scheme.

The general representation of a cable as a transmission line

The most important assumption underlying 1-dimensional cable theory is linear-
ity of the dendritic membrane, i.e. the membrane impedance z,, depends on time but
not on the applied voltage. To solve the problem of deriving the Green function for
a cable with a linear—but not necessarily passive—membrane, we consider the
cable equation in the frequency domain. This approach has the advantage of
offering a general and simple solution to the cable equation in arbitrary cables.

We represent a linear, 1-dimensional cable as an infinite ladder network with
arbitrary transverse and serial impedances z,,(w) and z,(w) as in Fig. 1 * If the

* The radial frequency w is defined as 2«f where f is the frequency in Hz.
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membrane is assumed to be passive, z,,(w) is modeled by a capacitance c,, in
parallel with a resistance r,,:

r

Z(w) =3 (1a)

1 +tier,

with the membrane time-constant 7, = ¢, r, . Analyzing the small-signal behavior of
the squid axon, yields a membrane which is described by two inductances, two
capacitances and 4 resistances {Sabah and Leibovic, 1969; Mauro et al., 1970). Thus,

the associated membrane impedance is given by
a3w3 + a2w2 +aw+
Biw* + By’ + By’ + Biw + B,

The impedance of the intracellular cytoplasm is given by a ohmic resistance,
although our algorithm does not require it:

z,(0)=r, (2)

Under the basic assumptions of 1-dimensional cable theory (for a review consult
Rall, 1977 and Jack et al., 1975) the equations can be written directly in the Laplace
domain as

z,(w)= (1b)

aV(gcx,w) = 2 (@)i,(x, w) (3)
i, (x, w) .

= —i,(x,w) (4)
and

Vix,w)=1z,(w)i,(x, o) (5)

where V(x, w), i ,(x, w) and i,(x, w) are the Laplace transforms (with respect to
time) of the membrane potential V(x, ¢), the intracellular axial current i ,(x, ¢) and
the membrane current i,,(x, ¢t). Combining these equations leads to a general form
of the cable equation for an infinite cable:

PV(x, 0) _

2
o y(w)¥(x, w) (6)
outside
I B
m m m
JIZglr JIZC’I ||Za|r ]ZQLI inside

Fig. 1. The general representation of a one-dimensional cable with arbitrary membrane impedance
z,,=z,,(w) and serial impedance z, = z,(w). The extracellular impedance z,(w) is neglected.
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with the propagation constant y(w) given by

2 z4(w)

Y(w) —zm(w) (7)
For the steady-state case, w =0, y>=r,/r,, =1/\?, where X is the space constant.
Eqn. 6 shows the advantage of using the Laplace transform V(x, w) instead of the
original function. If the membrane contains a resistance, an inductance in series with
another resistance and a capacitance, the cable equation in the time domain is a
partial-differential equation of order three, while the corresponding Eqn. 6 is an
ordinary second order differential equation. The nature of the neuronal membrane is
fully contained in y(w) and does not affect the form of Eqn. 6.

If we follow Rall (1959) and Butz and Cowan (1974) in the choice of hyperbolic
functions, the solution of Eqn. 6 has the general form
V(x,w)=A cosh{y(w)x}+ B sinh{y(w)x} (8)
where 4 and B depend on the frequency and boundary conditions. The next section
shows how the voltage distribution in a cable structure of arbitrary geometry can be
derived.

The four elementary rules

In the following, we list 4 elementary rules which uniquely determine the
potential in an arbitrary cable structure (without loops) generated by a current input

£ Zy cosh (y-2) + Z¢si .
Rule I —* 5 7 - Zc ¥l .S Y ) cSlnh (y 1)
Zy Zy sinh (y-4) + Z cosh (y .€)

z }
Rule T L 7t o+ z5

Z2
2 I Zc sinh (y-x) (y-x)
~ sin -x) + Zg cosh (y. ~
Rule IO Iy 7 c Y 0 Y- X ;
Zpg X Zp (ZgtZp cosh(y 81+ (Z +ZoZ,) sinh(y-4)
Va Ze
£ Zpcosh(y.x) + Z sinh (y - x) ~

Rule I¥ ~ Vy =
Zp X }‘ Vg X" Zocosn ly L1+ 2o smn (y ) 2
Y

Fig. 2. The 4 rules needed to solve the cable equation in one-dimension cables. The first rule gives the
impedance of a single cylinder and the second the combined impedance of two branching cylinders. The
third rule expresses the voltage at any point along a cylinder as a function of the injected current at one
end. The fourth rule relates the voltage at any point in a cylinder to the voltage at one end. All variables
are functions of the radial frequency w.
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(Fig. 2). The equations themselves are not new and can be found, in different forms,
in different publications (Rall, 1959; Barrett and Crill, 1974; Butz and Cowan, 1974;
Glasser, 1977). Our main contribution consists of the extension of these equations to
cover generalized linear membranes and of their implementation in a fast and
efficient algorithm that applies to arbitrary branched trees.

Z. denotes the characteristic impedance of the specific branch considered:

Z(0)=2z,(0)/v(w) (9)

and Zy(w) and Z,(w) the terminal impedance at the left (x=0) and the right
(x = /) boundary of a given branch. Under the constraint that the potential tends to
zero (killed end; see Rall, 1959) it follows that the terminal impedance Z; (or Z,) is
zero. The more realistic condition in which no current is allowed to cross the
terminal boundary 9V /dx = 0 (sealed end) implies Z, — co.

Rule I describes the impedance Z(w) of a branch of length / and terminal
impedance Z;:
Z,(w) cosh{y(w)!} +Z.(w) sinh{y(w)!}

(@)= 2 Z0) sinh{ (@)1 ) + Z.(@) cosh{v(w)!} "

If the branch is a terminal branch, satisfying the sealed-end boundary condition,
Eqn. 10 reduces to:

cosh{y(w)/}
sinh{y(w)!}

These equations are given in Butz and Cowan (1974; Eqn. 52) and can easily be
derived using four-pole transmission-line theory as set forth in Weber (1965).

Z(w)=Z.(w)

Rule II gives the total impedance of a branch point. If two branches at a fork
have input impedance Z,(w) and Z,(w), respectively, their combined admittance is
the sum of the individual admittances, i.e.

-1 -1 -1
Z(0) =Zy(w)  +2Z,(0) (11)
Notice that this rule can be generalized immediately to an arbitrary number of

cylinders branching off.

Rule III gives the voltage at position x (with respect to the local coordinate
system of the branch) if a current I(w) is injected at one end of the cable (x =/):

V(x, w)=2Z(w)[Z(w)sinh{y(w)x}+Z,(«) cosh{y(w)x}]I(w)
/1(Zo(@) + Z/(w))cosh{y(0)1} +(Z(@) + Zy(w) Z/ (@) /Z.())
x sinh { y(w)!}] (12)
Eqn. 12 is given in Butz and Cowan (1974; Eqn. 3).
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Rule IV gives the voltage at position x along the branch if the potential is known
to be V,(w) at one end of the cylinder (x =1/):
_ Z(w) sinh{y(w)x} +Z(«) cosh{ y(w)x}

V(x. 0) = S anh (7(@)1) + Zu(@) cosh{v(w)i] ) (13)

This equation can be obtained by inverting Eqn. 12 to give the current I(w) if the
voltage at one end (x = /) is held at ¥(w). Inserting I(w) into Eqn. 11 yields directly
Eqn. 13.

If the injected current in Eqn. 12 is a § pulse, i.e. I(w) =1, the function V(x, )
can be identified with the transfer-function or transfer-impedance K, (w), where i
and j are the input—output locations *. If these two locations coincide, i.e. x =/ in
Eqgn. 12, the familiar input impedance K;;(w) is obtained. Knowledge of the transfer
impedance between i and j allows one to compute the voltage response at j, V,(w),
to an arbitrary current input I,(w) at i,

V}(w)=Kij(w)'Ii(w) (14a)
or, in the time-domain
V;’(t)=Kij(t)*Ii(t) (14b)

where * represents convolution and K, (¢) is the Green-function of the system, Le.
the Laplace-transform of K, ;(w).

In deriving the transfer-impedance K,;(w) in a branched tree structure, our
program reduces the dendritic tree to a configuration amenable to rule III by
applying repetitively rules I and II until the whole structure is reduced to a single
branch with two terminal impedances, at one end of which the current is injected.
After a single invocation of rule III, the transfer-impedance to any point in the cable
stfucture can be calculated via recurrent application of rule IV by unfolding the tree
(see Fig. 3).

Treating synaptic input as conductance change

Synaptic inputs, however, consist of transient conductance changes g(¢) to
specific ions with equilibrium potential E, relative to the resting potential of the cell.
The resulting current /,(¢) at location i is, in general, not proportional to g(t), since

I(1)=g(1)-(E—= V(1)) (15)
Convolving both sides with the input impedance k,(¢) yields
Vi) =K, ()=[g(6)-(E-Vi(1)}] (16)

a Volterra integral equation (Rall, 1964; Poggio and Torre, 1978, 1981). The
nonlinear nature of the synaptic input is crucial for a number of specific computa-

* Thus, the absolute value of K, ;(w) has the dimension of a resistance.
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tions, such as direction-selectivity (Torre and Poggio, 1978) and activity-dependent
changes in spine morphology (Koch and Poggio, 1982). Thus, once K,;(¢) has been
obtained, Eqn. 16 can easily be solved by simple numerical integration (Koch et al.,

Current-Injecting
Electrode

"Voltage- Recording
Electrode

(d)
z
z (h) 57
(f) a 7, (g) 1z,
) - 5 I Vg 4
V5 '\75
Zs' z
5
(i) Va (3
3 -
V3
Z, 2
3 V2

Fig. 3. The application of the algorithm to a simple neuron with the current source in branch 5 and the
voltage-recording electrode in branch 2. In a to f the tree is reduced by recurrent application of rules I and
II to a single cylinder. In f to j the potential due to the injected current I(w) is * propagated” back
towards branch 2 (see text).
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1983) to give the voltage V;(¢). Note that the optimal time-step, At, used for the
integration, depends on the input site and the time-course of g().

The voltage evoked by the synaptic input, for instance at the soma, is subse-
quently determined using Eqn. 14b. When computing the voltage response to two or
more simultaneous synaptic inputs, the nonlinear interaction between synapses has
to be taken into account (Koch et al., 1982, 1983).

An example

We will consider a simple neuron, represented by 8 cylinders (Fig. 3a), with
passive membrane R . For the sake of our argumentation, we will identify branch 3
with the soma, i.e. a very short but thick diameter, branches 2, 4 and 7 with primary
dendrites and branch 1 with the axon. Since we are considering only the passive
behavior of the cell, the axon is modeled as a very long cable with lowered
membrane resistance R,, . The membrane capacity C,, and the intracellular resis-
tance R, are assumed to be uniform throughout the cell. As in all of our previous
studies, terminal impedances (in our case, Z,, Z,, Zs, Zs and Zg) obey the sealed
end boundary condition, i.e. Z, = 0.

Z.(w) for branch 1 is given by r, /,(w), where y;(@)* =r, (1 + i, )/ -
The values r,, , c,, and r, are derived from the specific membrane parameters using
t, =R,/(7d)), ¢,y =7d,C, and r, = 4R,/d}, where d, is the diameter of branch 1
(Jack et al., 1975) *. The values for all other branches are computed in a similar
fashion. The lengths /,, are given in cm. We will determine the input impedance at x5
in branch 5 (Fig. 3a) and the transfer impedance between that location and x, in
branch 2.

In a first series of steps our computer program reduces the dendritic tree to a
configuration needed to apply rule III, that is it ‘folds’ the tree into a single branch.
Applying rule 1 for the sealed end, we obtain

cosh{v,(w); }

sinh{ y;(w)/, }

cosh{ v,(w)l, }

sinh{v,(w)/, }

COSh{Ys(“’)(ls “Xs)}

sinh{ s («)(/s —xs5)}

and likewise for Z (w) and Zg(w). The tree of Fig. 3a is now reduced to Fig. 3b.

Making use of rule II: Z,,(w)™! = Z;(w) ™' + Z,(w) "' and once again rule I:
3 Z,(w) cosh{y,(w)l;} +Z 5 sinh{y;(w)l;}

Z,(0)=Z(w) -

Zy(w) sinh{y;(w)l;} + Z cosh{y;(w)l;}

Zl(‘*’) = ch(“’)

Zz(“’) = Zcz(‘*’)

Zg(‘*’) = Z(-s(‘*’)

* Note that R, is given in 2cm?, C,, in Fem™? and R, in 2cm.
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gives Fig. 3c. Repetitive application of rules I and II (see Fig. 3d-g) leads to the
configuration depicted in Fig. 3g. For the input impedance K;(w) we make use of
rule IIT and remember that I(w)=1

Kss(w)= Z46(w)[2('5(w) Sinh{')’s(‘*’)xs} +Z5(w) COSh{Ys(‘*’)xs}]
/[(Z%(‘*’) + Zg(“’)) COSh{Ys(“’)ls}
+(Zc5(‘*’) +ZAé(w)Zg(w)/Zd(w))Sinh{ Ys(w)ls}]

In order to compute the transfer impedance K5, (w), the program ‘unfolds’ the tree
by use of rule IV (Fig. 3h, i and j):

Ky(0)=[Z4(0) Zi(0)] /[(Zss (@) + Zi(@)) cosh{vs(w)ls } +(Z.s(w)
+Zae(‘*’)2§(‘*’)/zcs(‘*’)) Sinh{YS("))ls}]

B Zy(w)Ks(w)
Ki(w)= Zy(w) COSh{Y4(w)14} +Z.4(0) sinh{Y4(w)l4}
Ky(w)= Zulo) Bl

Z,(w) Cosh{y3(w)l3} +Z,(w) sinh{yB(w)l3 }
and, finally, taking account of the sealed end terminal in branch 2 (Fig. 3j):

cosh{ v,(w)x, }
cosh{ v, (w)l, }

Once the complex transfer-function K, («) has been computed, the Green function
K, (1) is obtained by inverse Fourier transformation using for instance the widely
available ‘Fast Fourier Transform’ (FFT) algorithm derived by Cooley and Tukey
(1965). For details of the inversion, along with a discussion of the resulting errors of
approximation and aliasing, see Norman (1972). The voltage at 2 and 5 for the
current input I5(¢) is given by V(1) = Kss(t)* I,(¢t) and V(1) = Ks,(1)* I, (1) *.

However, if one is only interested in the steady-state properties of neurons, when
most nonlinear conductances are presumably inactivated, one can forego computing
the transfer-function for a large frequency spectrum. For a stationary current input
I,, the real steady-state transfer-impedance K, (v =0)= K, gives directly the in-
duced voltage change V; = K, - I;. For a stationary synaptic conductance input g;, or
for a conductance change with a time-course several times longer than the membrane
time-constant 7, (Koch et al., 1983), Vis given by V, = g, EK, /(1 + g,K ;). Comput-
ing the response of the neuron to long-lasting synaptic inputs can therefore be done
with considerably reduced computational overhead.

Use of a recursive, high-level computer language, such as PASCAL, C or LISP,
leads to a simple implementation of the algorithm for computing K, () in arbitrary

Ksz(‘*’):Ks(“’)

* Two properties of K ; can be exploited to synthesize transfer functions: K;; = K ;and K,; = K ;- K, /K,
for any point / lying between / and j (Koch et al., 1982).



312

dendritic trees *. The structure of the neuron is described by considering the
branches as nodes and associating with each such node three pointers or edges: one
always points to the parent branch (ie. the branch where the current branch
originated), while the other two point to any existing daughter branches (if no
daughter branches exist, such as in the case of a terminal branch, the corresponding
pointers are set to nil). The program requires as input the branching pattern of the
neuron and the parameters describing the dendritic membrane. In the most general
case, the user can specify a different type of membrane for every branch or parts
thereof. It is therefore straightforward to model cells with an inhomogeneous
distribution of the membrane resistance R, throughout the dendritic tree (as
postulated for a-motoneurons; Fleshman et al., 1983). The program then automati-
cally computes the transfer function K, for a specified frequency range between any
two points.

Discussion and comparison with other methods

The major advantage of our algorithm is its generality. Our algorithm computes
for any neuronal geometry the Laplace transform of the voltage response at any
point j in response to a current input at location i. This compares well with most
other methods giving either an approximation of the voltage response in spatially
inhomogeneous structures such as all compartment methods (for a review of these
see Perkel et al., 1981), introduce extra assumptions, like Rall’s equivalent cylinder
method (Rall, 1964), or consider only very simple cable configurations as Jack and
Redman (1971) or Norman (1972) have done. The method first proposed by Rall
(1959) and subsequently applied by Barrett and Crill (1974) to determine the input
impedance of a reconstructed a-motoneuron can be regarded as a special case of our
approach. More similar to our method is the system used by Glasser and colleagues
(Glasser et al., 1977, Glasser, 1977) for describing the electrical properties of the
lobster stomatogastric ganglion. Note that recently, a slightly different derivation of
a similar algorithm has appeared (Turner 1984a, b). ;

As we have already pointed out in the introduction, Butz and Cowan (1974)
developed a geometrical calculus for computing the Laplace transform of the voltage
in dendritic systems of arbitrary geometry. We have extended their results to cover
arbitrary linear membranes and cylinders with discontinuous change in diameter and
membrane properties and implemented them into a PASCAL program. This algo-
rithm, while giving the same results, is conceptually more elaborate than the
algorithm which we have presented. This increased complexity is mirrored in a
longer computation time **.

* A listing of a documented LISP program will be supplied upon request. A PASCAL version of the
program has been implemented on the IBM Personal Computer (E. Famiglietti, personal comm.).
** About a factor of 5; for a dendritic tree consisting of 135 branches, the present implementation of our
algorithm on a single user, medium size computer (Lisp Machine) requires about 4 s to compute
K, (w) fora given w.
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These frequency domain methods have specific advantages and disadvantages.
Their main advantage is that once the transfer function K, has been computed, the
voltage response at j for arbitrary current or conductance inputs at / can be easily
obtained, unlike compartments methods. Moreover, K, (w) is, for a specified
neuronal geometry, the exact solution of the cable equation. It is only during the
inverse Laplace transform into the time-domain, that errors are introduced. This
allows the simulation of anatomically and physiologically discrete inputs to the cell.
Another point in their favor is the possibility of directly matching the response of a
neuron to a small amplitude white noise signal with the computed K, ,(w) (white
noise analysis; Marmarelis and Marmarelis, 1978). Voltage clamping the intracellular
potential in neurons with extended dendrites and subsequent perturbation of the
system allows the study of voltage dependent conductances by piecewise lineariza-
tion, providing the kinetic parameters of the underlying channels. Such an approach
has been used, for instance, to study cable properties of cultured neurons and of
lamprey central neurons (Moore and Christensen, 1984). A further application of
our approach is an analysis of the effect of linear membranes having inductance-like
properties on the information processing performed in dendritic trees (Koch, 1984).

The most significant drawback of our method is its inability to treat nonlinear
membranes. Active behaviour involving spike initiation and propagation cannot be
modeled. This constraint limits the application of this class of algorithms to
non-spiking neurons, dendritic trees with passive properties or to a small-signal
analysis of neuronal structures with active structures, such as the squid axon (Mauro
et al., 1970). Modeling nonlinear electric behavior necessitates the use of more
general programs, such as the electric circuit simulation program SPICE, recently
adopted to neuronal modeling (Segev et al., 1984).
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