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We investigat~l fast improvement of visual performance in several hyperacuity tasks such as vernier 
acuity and stereoscopic depth perception in almost 100 observers. Results indicate that the fast phase 
of perceptual learning, occurring within less than 1 hr of training, is specific for the visual field position 
and for the particular hyperacuity task, but is only partly specific for the eye trained and for the offset 
tested. Learning occurs without feedback. We conjecture that the site of learning may be quite early 
in the visual pathway. 
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INTRODUCTION 

Recent psychophysical evidence suggests that human 
adults are able to significantly improve performance in 
perceptual tasks. Improvement occurs within a training 
time of a few hundred presentations (Fiorentini & 
Berardi, 1980, 1981; Karni & Sagi, 1991; Shiu & Pashler, 
1992; Poggio, Fable & Edelman, 1992; Vaina, personal 
communication; Weiss, Edelman & Fable, 1993). Learn- 
ing is specific in a number of respects. For instance, the 
improvement of thresholds caused by perceptual learn- 
ing disappears after rotation of the vernier stimulus by 
90 deg (Poggio, Fable & Edelman, 1991; Poggio et al., 
1992; Ahissar & Hochstein, 1993) and learning seems to 
be specific for visual field position (Ramachandran & 
Braddick, 1973; Nazir & O'Regan, 1990; O'Toole & 
Kersten, 1992). On the other hand, more cognitive 
aspects such as global pattern structure, attention and 
motivation will also influence performance and the speed 
of learning (e.g. Ahissar & Hochstein, 1993; Weiss et al., 
1993; Rentschler, Jiittner & Caelli, 1994; Herzog & 
Fable, 1994). 

In trying to clarify the mechanisms underlying percep- 
tual learning, in this paper we investigate the specificity 
of  perceptual learning with respect to visual field pos- 
ition, offset size and the eye tested. Since learning is 
specific for orientation, one may suspect that it may also 
be specific for visual field position, for the offset size used 
during training, and perhaps even for the eye that 
learned under monocular conditions. Another important 
question discussed in this paper is the role of feedback. 
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In a previous investigation (Fahle & Edelman, 1993; see 
also Weiss et al., 1993), we found perceptual learning 
even without auditory feedback, well in line with earlier 
reports in the literature (McKee & Westheimer, 1978). It 
remained unclear, however, whether learning without 
feedback is significantly slower than with feedback, and 
whether learning is possible even with presentation of 
sub-threshold stimuli only. The third goal of this paper 
was to find out whether the orientation specificity of 
vernier learning would also hold true for other domains 
such as stereoscopic depth perception. 

MATERIALS AND METHODS 

Stimuli, usually line or three-dot vernier targets, ap- 
peared on an oscilloscope screen (Hewlett Packard 1333; 
P31 phosphor) under computer control. Targets were 
10 min arc long and 2 min arc wide, intensified every 
16 msec to a mean luminance of 240 cd/m 2 on a back- 
ground of 2cd/m2; i.e. contrast was Cw=Lmax/ 
Lmi n --120. Stimuli appeared for 150msec each, and 
observers had to indicate the direction of vernier offset 
by pressing the appropriate one of two push-buttons. 
The next stimulus followed 500 msec after the observer's 
response. The computer supplied auditory error- 
feedback except in Expt 4. 

We started each experiment for each observer by 
measuring a threshold based on a block of 80 stimulus 
presentations, using a method of adaptive Probit esti- 
mation (PEST) (Taylor & Creelman, 1967). This 
threshold indicated the individual level of performance 
of each subject and was typically around 15 see arc for 
75% correct responses, with the extremes ranging be- 
tween 7.5 and 25 sec arc. In the following blocks of the 
experiment, percentages of correct responses for the 
threshold displacement obtained in the first block were 
collected, with block size always being 80 presentations. 
This is to say that we used percentages of correct 
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responses, rather than thresholds, in most of the exper- 
iments to assess the improvement in performance due to 
learning. Thresholds in earlier experiments had proven 
to be too variable in inexperienced observers to be used 
for this purpose, though we give an example of how 
thresholds improve in the experiment on stereoscopic 
depth perception. 

Observation distance was 2.5 m, and positional accu- 
racy on the screen better than 1 sec arc at this distance. 
Observers were paid volunteers, usually undergraduate 
students of Tiibingen university who gave informed 
consent to participate in this study. They were naive as 
to the exact aim of  the experiments. Testing lasted 2 hr 
in most of the experiments, divided to two sessions, 
normally on consecutive days. The change in stimulus or 
viewing conditions (e.g. right eye-left eye) always oc- 
curred after the first block of the second session, in order 
to separate possible effects of forgetting between the 
sessions from stimulus-specific effects. At the end of the 
second session, the first stimulus condition was retested 
once. Altogether, almost 100 observers participated in 
the experiments. Their visual acuity was normal or 
corrected-to-normal, and each observer participated in 
only one experiment. 

To evaluate the results, we have performed an analysis 
of covariance (ANCOVA), using the Statistical Analysis 
Software (SAS) procedure General  Linear Models 
(GLM), with a homogeneity-of-slopes model. The per- 
centages of  correct responses resp. thresholds in each 
block were first transformed logarithmically to accom- 
modate the asymptotic improvement with time. 

Simulat ions  

We originally used a HyperBF network to test the 
computational plausibility of  learning a task such as 
vernier acuity from signals provided by cells early in the 
visual pathway, such as photoreceptor signals (Poggio 
et al., 1992). 

The operation of  the simplest version of this model, 
sometimes called radial basis function (RBF) network, 
can be understood intuitively by employing the notion of 
similarity. Consider a system confronted with a novel 
stimulus, drawn from a space of possibilities some of 
which are already familiar to the system (i.e. the appro- 
priate responses for these stimuli are known). The 
required response can then be formed by combining the 
responses to familiar stimuli that are similar to the 
present one. To make this notion more precise, one must 
decide how to represent the stimuli, define similarity 
between stimulus representations, and specify the man- 
ner of combining responses to familiar stimuli. In the 
RBF model we used, a vernier is represented by the 
pattern of activities it evokes in a set of receptive fields 
onto which it is projected, similarity is defined in terms 
of  distance between vectors of  activities of the receptive 
fields, and the new response is computed as a linear 
superposition of  responses to the familiar stimuli. The 
familiar stimulus-response pairs are stored in the system 
and are considered the basis functions or the templates 
generating the response to a new stimulus. In principle, 

a system implementing the RBF model can start from a 
tabula rasa situation and acquire the necessary basis 
functions by storing the incoming examples during a 
learning phase. 

Formally the output of the RBF network is y = 
Cg (x), where C is the weight matrix and g is a vector 
where each component is the output of one of  a set of 
hidden units, that embody the basis functions. The input 
vector x consists, in our original model, of the signals 
from photoreceptors [Poggio et al. (1992) mentioned, 
however, as more biologically plausible a set of inputs 
similar to the signal of  cortical cells both oriented and 
circularly symmetric]. Each unit performs an operation 
that could be described as "blurred" template matching 
by measuring the similarity of the novel input with the 
template which represents the optimal stimulus t to 
which the unit is tuned. The activity of the unit depends 
then on this similarity through (typically) a Gaussian 
function G ( I ] x -  t[]). At the output of  the network the 
activities of the various units are combined with appro- 
priate weights, determined during the learning stage. 
Thus classification of a novel vernier stimulus is achieved 
by comparing the actual stimulus with the stored tem- 
plates (which are identical with the examples in the RBF 
network) and by combining the results of  these compari- 
sons (Poggio et al., 1992). 

This is the simplest in a class of  models called hyper 
basis function (HyperBF) networks (Poggio & Girosi, 
1990; Girosi, Jones & Poggio, 1993). In the more general 
HyperBF scheme the number of  units, i.e. templates, 
used during recognition may be less than the number of 
training views; the centers are also changed during 
learning and are in general different from any of  the 
examples after the training phase; furthermore the ap- 
propriate similarity metric may be found automatically 
during learning. Even in a HyperBF network, however, 
the centers will be very similar to the examples whenever 
the training phase is as short as in all the simulations of 
this paper. 

RESULTS 

Exper imen t  I. Interocular transfer 

Here, only one eye saw the stimuli. Six observers 
started with the left eye, six started with the right eye. 
After the first block of  the second session, a short pause 
(3 min) was made and testing continued with the other 
eye. An opaque occluder, as used for perimetry and, 
which did not exert any pressure on the occluded eye, 
covered one eye. In control experiments with additional 
observers, transition between eyes occurred before the 
start of  the second session, with very similar results. As 
it is obvious from Fig. l(a), learning improved perform- 
ance significantly even under monocular conditions, and 
learning transferred only partly to the partner eye, i.e. 
fast perceptual learning in vernier acuity, is at least in 
part specific for the eye through which the learning 
occurred. Figure l(b) illustrates the variability of  the 
effect across different subjects. This topic and the caution 
needed in interpreting the data is discussed later. 
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F I G U R E  1. (a) Vernier performance as a function of  monocular  learning. Means and SEs of  12 observers. Six observers started 
with the left eye patched while the remaining six observers initially had the right eye patched. After 1 hr  the eye patch was 
moved to the other eye. The average data seem to show that learning did not  completely transfer from one eye to the partner 
eye. The effect of  eye, as evaluated by an A N C O V A  (see Materials and Methods) was not  significant [F(1,464)= 2.25, 
P = 0.134] and neithe[ was the interaction of  block and eye [F(1,464)= 1.76, P = 0.186]. Only the effect of  block reached 
significance [F(1,464) = 23.3, P < 0.0001]. This is to say that the transfer of  learning between the eyes failed to reach 
significance. (b) Individual results of  four of  the 12 observers that are pooled together in (a). The first one (DZ) shows a clear 
absence of  transfer, the second (SL) a clear transfer and the third and forth (GT and FR) are typical for the remaining 10 

of  the subjects, each one of  which does not  show a clear trend. 

3005 

Experiment 2. Visual field position 

A pilot study in which vernier targets appeared at a 
peripheral visual field position and then at another 
position gave inhomogeneous results, with sometimes 
complete transfer of  learning from one position to 
another even when orientation changed by 90 deg at the 
same time as visual field position changed. We concluded 
that two mechanisms might be active under these con- 

ditions: one that was stimulus specific and another one 
that might be concerned with moving attention from the 
center to the periphery of the visual field. We therefore 
decided to measure performance sequentially at eight 
visual field positions. The sequence of  visual field pos- 
itions, all at an eccentricity of  10 deg, was counterbal- 
anced among the eight observers, who had previously 
trained another perceptual task in the periphery. A video 
camera and video recorder monitored eye position for 



3006 

A 

o 

0 u 

c 

o 

90-  

80- 

70- 

M. FAHLE et  al. 

1 

5 

60 .lol 1-5o I 1-50 11-2o 
I II III IV 

] 1-~0 I 1-20 
V Vl 

block number 

p o s i t i o n  n u m b e r  

I 1-20 
VI I  

I 1-20 
VII I  

11-20 I 
I 

FIGURE 2. Performance in vernier detection as a function of  binocular learning in the periphery of  the visual field. The vernier 
target was presented 80 times at each of  the visual field positions at 10 deg eccentricity (Nos 1-8). Visual field position changed 
after each hour of  training. Inset shows the visual field positions tested. Observers fixated on one of  the positions indicated 
by the Nos 1-8. Sequence of  positions was counterbalanced between the eight observers that participated in the experiment, 
i.e. at each period of  learning (I-VIII), each observer fixated a different position, and each observer learned at each position 
only once (except at his/her first position, I). The graph shows that mean results of  the eight observers improved during most 
of  the 1 hr intervals, but decreased at most of  the transitions between positions (vertical lines). The breaks between sessions 
however (interrupted vertical lines) did not significantly influence the results. The effect of  position was significant 
[F(7,1264) = 2.53, P = 0.0136], i.e. there was an over-all improvement with time. The effect of  block was highly significant 
[F(1,1264) = 28.2, P = 0.0001], i.e. observers improved at each position, but the interaction between block and position failed 

to reach significance (P = 0.35), indicating that the extent o f  learning was similar for all positions tested. 

fixation control. Means and SDs of all observers are 
shown in Fig. 2, while Fig. 3 shows the results of  all 
observers, collapsed over subsequent transitions. Learn- 
ing of  vernier acuity appears to be specific for visual field 
position. The interval between subsequent sessions of  
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FIGUR E  3. Vernier detection in the periphery of  the visual field. 
Results o f  all observers shown in Fig. 2 have been collapsed over 
subsequent changes of  visual field position (i.e. over positions 1-8). 
The dashed line indicates again the break between subsequent sessions, 
i.e. usually subsequent days. In this graph the improvement of  

performance is more clearly seen than in the previous graph. 

usually 24 hr, however, did not influence the results 
significantly. 

Experiment 3. Stimulus range 

The HyperBF model with photoreceptor inputs (see 
Methods) would predict that learning of  vernier acuity 
is at least partly specific for the offset size presented 
during learning. To test this prediction, we performed 
two experiments. In the first experiment, one group of  six 
observers had to discriminate between verniers offset to 
the right vs to the left by 10 sec arc, and after 1 hr, offset 
was enlarged to be 30 sec arc [Fig. 4(a)]. A second group 
of  six observers started with stimuli offset by 30 sec arc 
and after 1 hr, offset was set to 10 sec arc [Fig. 4(b)]. 
Thus for each block of  Fig. 4(c), there was an equal 
number of  10 and 30 sec arc stimuli. The combined 
results of  both groups show that there is an almost 
complete transfer of  learning from one offset size to 
another: there is only a small dip in performance follow- 
ing the transition between offset sizes. As expected, 
simulations of the HyperBF model as shown in Fig. 4(d) 
show a much sharper dip in performance that seems at 
odds with our experimental results. 
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F I G U R E  4. Vernier l:erformance for stimulus offsets of  10 and 30 see arc. One group of 6 observers started with an offset 
o f  10 see arc and switched to 30 see arc after 1 hr of  training (a), while the sequence was reversed for the second group of  
observers (b). Means of  all observers are shown in (c). (d) The simulation of  the experiment using a HyperBF network. The 
input to the network was an array of  "photoreceptor" activities (the identification of  the input units with photoreceptors 
here does not imply an attempt to model the neurophysiological aspects o f  hyperacuity perception). There were eight 
receptors, positioned randomly on a loose 4 x 2 grid. Each of  the receptors calculated its response by integrating the 
input over a Gaussian-shaped region of  the "retina". The eight-component vector of  receptor outputs constituted the 
input to the RBF module, which was trained to produce an output of  + 1 for one sense of  the input vernier displacement, 
and - 1 for the other. During testing the performance was measured by counting the proportion of  trials in which the sign 
of  the module's output was consistent with the sense of  the vernier displacement. The effect of  levels was highly significant 
both in (a) and (b) [F~(1,235) = 335, P = 0.0001; Fb(1,236 ) = 33.6, P = 0.0001], as was the effect of  block [Fa(1,235) = 36.5, 
P < 0.0001; Fb(1,236 ) = 14.4, P = 0.0002]. The interaction between block and level was significant for (a) [F(1,235) = 37.0, 
P < 0.0001] but not significant for (b) [F(1,236) = 0.54, P = 0.463]. Here, the difference was obviously caused by the ceiling 

effect in (a). 

In the second part of the experiment, six observers 
started with an offset size of 30 sec arc that decreased to 
20 sec arc after 30 min of training, and to 10 sec arc after 
60 min of training. Therefore, this group had to detect 
offsets of 10 sec arc after 1 hr of training, exactly as the 
second group of observers in the preceding experiment 
[Fig. 4(b)]. The only difference was that training in the 
previous experiment had been exclusively with 30 sec arc 
offsets, while it was equally divided to 30 and 20 sec arc 
in this experiment. The results of the observers in 
Fig. 4(b) are somewhat lower at the 21st block, i.e. 
immediately after the transition to the smallest offset, 
than the results for the corresponding block in Fig. 5. 
This result indicates a limited capability of observers to 
generalize between offset ranges. The difference between 
groups of observers, however, is not significant for the 
21 st block. 

Experiment 4. Influence of  feedback 
Previous investigations have shown that learning can 

occur even without feedback (McKee & Westheimer, 
1978; Fahle & Edelman, 1993; Shiu & Pashler, 1992; 
Karni & Sagi, 1991). To test whether this is also true for 
offsets that initially r~mge below threshold, and to assess 

the speed of learning in the absence of feedback, we 
presented vernier stimuli with a constant offset of 10 see 
arc, oriented either vertically or horizontally. Six observ- 
ers received auditory feedback regarding the correctness 
of their responses, another six observers did not receive 
feedback. Figure 6 shows the results. Learning occurred 
in the absence of feedback [Fig. 6(a)], even if offsets were 
initially below threshold. The slope of log percentage 
correct in the feedback condition was 0.0017, compared 
to 0.0011 in the no-feedback condition. The data aver- 
aged over the six subjects in each condition showed a 
similar pattern. A regression of log percentage correct on 
block for the averaged data yielded slopes of 0.0016 
(different from 0 at P = 0.0001) and 0.0011 (different 
from 0 at P = 0.0017) in the feedback and no-feedback 
conditions respectively. These slopes differ not signifi- 
cantly from each other (P = 0.156). 

Experiment 5. Transfer between line and point vernier 
stimuli 

In principle, learning might be specific for the stimulus 
presented, or might lead to a better spatial resolution, at 
least for the orientation learned. To discriminate be- 
tween the two possibilities, we investigated whether 
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learning would transfer from one hyperacuity stimulus, 
namely standard line verniers, to a three-point vernier 
stimulus of identical orientation and size, and vice versa. 
The inset of Fig. 7 indicates the shape of the stimuli. The 
results of 12 observers indicate that there is hardly any 
transfer of learning between the two hyperacuity tasks. 
Figure 7(d) shows the result of simulations of a HyperBF 
network on the same task. In this case the simulations 
are more consistent with the experimental data: there is 
a dip in performance, even though it is smaller than in 
the observer’s results. 

In a related task, three observers had to indicate 
whether a vernier stimulus was offset to the left or was 
straight. After 1 hr of training, the task changed to the 
discrimination between a straight vernier and a vernier 
offset to the right. For another three observers, the 
sequence of tasks was reversed. As shown in Fig. 8(a), 
there was partial transfer of learning from offsets to the 
right to offsets to the left. Simulations with a HyperBF 
network give quite different results, since they show a 
very significant drop in performance [Fig. S(b)]. 

Experiment 6. Orientation dependence in other hyper- 
acuity tasks 

We have reported previously that learning in vernier 
acuity is specific for orientation both for the fast phase 
of learning (Poggio et al., 1992) and the slow phase 
of learning (Fahle & Edelman, 1993). The same is true 
for learning in a jump displacement task (Fahle & 
Skrandies, 1995; Fahle, 1994). Stereoscopic thresholds 
were measured in six observers to assess whether the 
orientation specificity of learning holds true also for 
three-dimensional space perception. 

Stimuli appeared on two x/y monitors, equipped with 
polarizing filters matched to filters in front of the 
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FIGURE 5. Vernier performance for different offsets, as in Fig. 4(b). 
Here, however, an offset size of 20 set arc was tested between the 30 
and 10 set arc offsets. After 1 hr of training conditions were identical 
for the observers whose results are shown here and the observers of 
Fig. 4(b). Results for block No. 21, however, are not significantly 
better for the observers of Fig. 5 (unpaired r-test, P = 0.19). The effect 
of level is significant [F(2,234) = 7.58, P = 0.0006] as is the effect of 
block [F(1,234) = 4.07, P = 0.0451, while the interaction between block 

and levei is not signilicant. 
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FIGURE 6. Vernier performance for subthreshold offsets (10 set arc) 
as a function of learning (a) in the absence of auditory feedback (six 
observers) and (b) in the presence of auditory feedback (six observers). 
Means and SEs of all observers of each group. The interaction between 
the effects of feedback and of block was highly significant 
[F(2,476) = 11.2, P < O.OOOl], i.e. there was a highly significant differ- 
ence between results of observers who received auditory feedback 

versus those who did not receive error feedback. 

observers’ eyes. A semi-transparent mirror superim- 
posed the images of both observers (cf. Fahle & 
Westheimer, 1988). An adaptive method of sequential 
testing determined thresholds (PEST, see above). The 
observer’s task was to detect which of two points was 
closer to the observer and which one was farther away. 
Five observers started with the points being separated 
horizontally by 10 min arc, and switched to a vertical 
arrangement of the points after 1 hr of training, while the 
other five observers started with a vertical arrangement 
of the points. Thresholds improved significantly as a 
function of learning, but no transfer of learning occurred 
from one stimulus orientation to a stimulus rotated by 
90deg (Fig. 9). 

DISCUSSION 

Most of our experiments aimed to characterize the 
specificity of perceptual learning which is its most sur- 
prising feature and the one that suggests an early locus 
of learning in the visual pathway. Our results support 
our own preliminary reports and results by others in 
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similar perceptual tasks: fast learning of hyperacuity 
tasks does not fully transfer from an orientation to a 
different one, from one eye to the other, from one 
position in the visual field to another and from point 
verniers to line verniers or vice versa. The specificity for 
stimulus orientation is a strong argument against the 
suspicion that observers actually learn a strategy, be it 
for the general experimental set-up, be it for more stable 
fixation or accommodation. Caution is needed, however, 
in interpreting in detail the general conclusion of specifi- 
city of perceptual learning, mainly because the variabil- 
ity in the data is quite high. 

Inter-subject variability 
Our results show a relatively high degree of noise and 

of individual variability,, in line with previous reports 
(Fahle & Edelman, 1993; Kumar & Glaser, 1993). 
Notice that because of the nature of the learning task it 
is impossible to average, as usual in psychophysical 
experiments, equivalent multiple trials in the same indi- 
vidual. The data we pre~ent are therefore average data 
across several individuals. Their interpretation requires 
special care, since there is individual variability in the 
properties of the learning effects of which we ignore the 

causes--though inter-individual differences in the speed 
of learning are not an uncommon phenomenon also in 
everyday life. 

Consider, in particular, the experiment about interoc- 
ular transfer, which is probably the one that most suffers 
from the problem of individual variability. The data, 
averaged across 12 individuals, seem to suggest that 
transfer is far from complete. On the other hand, 
inspection of individual data .sets suggests that there are 
only one or two observers that clearly show lack of 
transfer, whereas another one shows full transfer and 
each of the remaining nine or 10 plots is too noisy 
to support by itself either claim. Figure l(b) contains 
four examples from the 12 time-courses we measured 
in as many subjects to illustrate the point that 
extrapolating from the average data to any specific 
individual may be quite dangerous. Additional data, 
however, on long-term learning, clearly show that 
at least the slow phase of vernier learning is eye 
specific (Fahle, 1994). These data, together with results 
by Sagi and Karni (1993) indicate that the slow phase 
of learning is specific for the eye that learned while 
the fast phase is far less specific and differs between 
observers. 
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F I G U R E  7. Vernier performance for s tandard line verniers and for three-dot verniers of  identical orientation and over-all size. 
Six observers started with three-dot verniers. After the first block of  the second hour  of  testing, these observers continued with 
vernier stimuli (a), while the experiment had the reverse temporal order for six other observers (b). Mean results clearly 
demonstrate  that  theie is no transfer between the tasks (c). (d) The simulation with a HyperBF network. The effect of  task 
was significant in (a) and (c) [Fa(1,227 ) = 0.84, P =0.04;  Fb(1,468 ) = 7.27, P = 0.073] while it was not  significant in (b) 
( P = 0 . 3 6 ) .  The effect of  block was significant in (a)-(c) [Fa(1,227)=4.04, P = 0 . 0 4 6 ;  Fb(1,222)=41.0 , P < 0 . 0 0 0 1 ;  
F¢(1,463) = 45.6, P < 0.0001]. The interaction between block and task was significant only in (b) and (c) [Fa(1,227 ) = 0.58, 
P = 0.31; Fb(1,222 ) = 8.1, P = 0.005; Fc(I,463 ) = 8.63, P = 0.0035]. This is to say that there is a certain amount  of  transfer 
between the two tasks. The slope of  a regression line through the first task is 1.13 +_ 0.17 (%/block) (P < 0.0001), while the 

slope of  a regression through the second task's results is 0.45 + 0.16 (P < 0.0064). 
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FIGUR E  8. Vernier thresholds for the discrimination between a 
straight stimulus and a stimulus offset to the right (resp. left). After 1 hr 
of  training the task changed to the discrimination between a straight 
vernier and a vernier offset to the left (resp. right). Individual results 
of  six observers and their means ( +  SEs). (b) The result of  simulations 
with a simple HyperBF network. The effect of  block and the inter- 
action between block and task are not significant in (a) (Pb = 0.386, 
Pb,t = 0.328), while the effect of  task is significant [F(1,336)= 6.8, 
P = 0.0095], i.e. there is some transfer between the tasks. The slope of  
a regression line through the results of  the first task is 0.422 + 0.1667 
(%/block) (P = 0.017) while the slope of  a linear regression through 

the results of  the second task is 0.191 + 0.167 (n.s.). 

Models of perceptual learning 
In this paper we attempt to characterize several 

properties of perceptual learning that are interesting 
in themselves and critical for the development of 
a model of the biological processes underlying 
perceptual learning. The model that we used originally 
(Poggio et al., 1992) to motivate our experiments--a 
HyperBF network with photoreceptor-like inputs, 
s e e  Fig. 10---was meant to provide a plausibility proof 
that perceptual tasks of the type described here can be 
indeed learned from a small set of examples. The argu- 
ment was computational in nature: there is sufficient 
information in a few examples of the task to generalize 
to novel instances. The model also supported the argu- 
ment that learning may be very specific, with little 
transfer to slightly different tasks, provided that the 
inputs used by the learning module were sufficiently low 
level. 
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F IGUR E 9. Stereoscopic thresholds as a function of  learning. The first 
group of  observers had to indicate whether the right or the left point 
was closer to them. After 1 hr of  training, the points appeared with 
identical binocular disparities, but arranged vertically one above the 
other. The second group of  observers underwent the reversed sequence 
of  testing. There was no transfer o f  learning between the orientations. 
The effects of  orientation and the interaction between block and 
orientation are not significant (Po = 0.41, Pb.o = 0.97) while the effect 

of  block is significant [F(1,236) = 8.21, P = 0.0045l. 

Results of some of the experiments described in 
this paper are inconsistent with the predictions of the 
HyperBF network with photoreceptor-like inputs that 
we used originally (model 1). It is therefore interesting to 
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FIGUR E 10. A network for interpolation with basis functions. The 
output is C g(x), where C is the weight matrix and g is a vector of  
hidden unit activities. Each hidden unit computes the similarity 
between the input and its preferred stimulus. In an RBF network, the 
activity of  the hidden unit then depends on this similarity through a 

Gaussian function G(llx - t 112). 
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consider alternative models such as a network that 
simply combines oriented receptive fields "looking" at 
the visual field with weights that are modified during 
learning (model 2). Weiss et al. (1993) originally pro- 
posed this model, by adding a learning component (the 
modifiable coefficients) to the "hardwired" model of 
Wilson (1986), which for the sake of the later discussion 
will be called model 3 (Wilson did not discuss the issue 
of learning of course and may correctly disagree with our 
hardwired interpretation of his model that we will carry 
on here for the sake of the discussion). Weiss et al. also 
demonstrated that their network (model 2, which is itself 
a HyperBF network with centers identical to oriented 
bars, see later) behaves in simulations in a way which is 
indistinguishable from a HyperBF model with oriented 
inputs and radial centers actually suggested (but not 
implemented) by Poggio et al. (1992). 

Models  and experiments  

Three experiments showed evidence for some transfer 
of learning. Figure 8 suggests that subjects could gener- 
alize at least partly from the comparison straight-left to 
straight-right. Simulations with a HyperBF model with 
photoreceptor-like inputs are inconsistent with this ex- 
perimental result. 

Transfer from one range to another (see Figs 4 and 5) 
is less difficult to explain with a HyperBF model with 
photoreceptor-like inputs. Simulations show that when 
the range changed (increased or decreased) by a factor of 
3, the dip in the Performance is not as pronounced as in 
the previous experiment. Human data suggest that trans- 
fer is more difficult as the difference in range increases: 
there is more transfer from 20 to 10 sec arc than from 30 
to 10 sec arc, though the difference is not significant. On 
the other hand there seems to be full transfer from 10 to 
30 sec arc which seems intuitive enough but runs counter 
to the prediction of a simple memory-based model which 
may have learned examples of the 10 sec arc task but 
should find them too dissimilar to novel 30 sec arc stimuli 
to be useful for their classification. 

The HyperBF model also exhibited a certain capacity 
for generalization across tasks: when the stimulus 
changed from line vernier to three dots, the dip in the 
performance was small, while it was more pronounced 
for the human subjects. 

Reflections on models 

The three models mentioned earlier are quite similar-- 
so similar that they can all be regarded as specific 
instances of HyperBF networks. What then are their 
critical differences in the context of perceptual learning? 
As alluded to by Weiss et al. (1993) in their discussion, 
the key difference boils down to the old trade-off be- 
tween nature and nurture. The hardwired model of 
Wilson is representative for the first extreme possibility; 
our model 1 for the latter. Model 2--the model of Weiss 
et al. (1993)--is a compromise between the two extreme 
hypotheses. 

Our original experiments, on fast perceptual learning, 
demonstrated the inadequacy of a class of explanations 

such as model 3: hardwired networks are clearly incon- 
sistent with data showing perceptual learning. The ex- 
periments of this paper suggest that explanations relying 
on learning mechanisms starting from a tabula rasa 
state--such as our original model 1--are also in- 
adequate. 

Model 1 starts from a tabula rasa situation creating 
new centers as the incoming examples require. It has 
therefore only the information contained in the set of 
examples. Models such as that of Weiss et al. (model 2), 
as well as models mixing 1 and 2 that we favor, have a 
repertoire of oriented receptive fields with different 
degrees of tuning, from coarse to sharp before the 
learning phase. Models of this type can be considered as 
HyperBF networks that start the learning phase with an 
existing vocabulary of centers, i.e. templates, tuned to a 
variety of optimal stimuli including bars of different 
orientations. The centers may or may not be modified 
during the actual learning phase; the coefficients c 
usually are (see Poggio & Girosi, 1989). 

Thus the difference between the class of models that 
Weiss et al. (1993) propose and the original model we 
described (Poggio et al., 1992) consists of whether the 
system can rely or not upon task-relevant information 
prior to being exposed to the set of examples. This prior 
information is embedded in a set of appropriate tem- 
plates available before the training phase. The tuning of 
the associated cells may in turn depend on an earlier and 
much slower phase of learning at the level of the 
development of the individual or the species (a HyperBF 
network may "find" oriented templates as the optimal 
centers if provided with a sufficiently large set of 
examples). As Weiss et al. (1993) remark, model 2 is 
equivalent to the idea of innate perceptual mechanisms 
tuned by experience. Of course there may exist percep- 
tual tasks and even hyperacuity tasks that are so unusual 
to render useless any prior information acquired by the 
organism prior to the task. In such a case--if it exists-- 
we predict that the experimental results may be ex- 
plained by a mixed 1 + 2 model synthesizing new centers 
in a stimulus-driven and task dependent way, in addition 
to an available vocabulary of existing tuned units. For 
the vernier and other hyperacuity tasks we have con- 
sidered, however, the class of models strictly of the type 
of model 2 seems sufficient: they are consistent with the 
data of this paper and with the data available so far. 
They are also qualitatively consistent with the fact that 
adults are able to perform the vernier task for sufficiently 
large offsets even without any traning phase, supervised 
or unsupervised and that the effects of short-term learn- 
ing are less pronounced in hyperacuity learning than in 
some other, more artificial learning tasks. These models 
are furthermore capable to better explain the results of 
experiments without feedback. 

Experiments  with and without f eedback  

Probably the most critical experiment for determining 
plausible classes of models is the experiment on the effect 
of feedback during learning. Figure 6 shows results that 
are consistent with the emerging agreement in the field 
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of perceptual learning: also in the case of  hyperacuity 
tasks, perceptual learning seems to take place even in the 
absence of feedback and it may require relatively large 
datasets to obtain a significant difference between learn- 
ing with vs without feedback (cf. Fahle & Edelman, 
1993). The result implies that a large class of  network 
models for learning cannot be used directly to develop 
a biologically plausible model of  this phenomenon. 
In particular, HyperBasis function models, as well as 
Multilayer Perception networks, cannot be used directly 
since they both require a teacher signal during learning, 
i.e. feedback. 

We had earlier suggested (Poggio et al., 1992; see 
especially Weiss et al., 1993) that networks of  that type 
could still account for the data if used in a bootstrapping 
mode, in which very few initial examples correctly 
labeled could be sufficient to classify novel examples that 
are sufficiently similar to them. The experiments of  Fig. 6 
show that learning occurs even when the offsets are 
below thresholds at the beginning of  the experiment. 
This seems at first glance to rule out a bootstrapping 
hypothesis (but not the learning method called EDL by 
Weiss et al., or exposure-dependent learning; this rule 
relies on prior information about  the task in that it keeps 
changes proportional  to the existing weights). We should 
remember, however, that subjects still performed above 
chance even if below the psychophysical threshold. The 
experiments of  Fig. 6 suggest in fact that the absence of 
feedback makes learning slower and may reduce its 
asymptotic performance. In a previous investigation on 
slow perceptual learning (Fahle & Edelman, 1993), 
slopes of  regression lines through the data obtained with 
vs without feedback were significantly different from 
each other in one experiment but failed to reach signifi- 
cance in another experiment. We have now reanalyzed 
these data with an ANCOVA,  using the SAS procedure 
GLM,  with a homogeneity-of-slopes model specifica- 
tion. The results show significant differences between the 
feedback vs no feedback condition for both of the old 
data sets (Expts 1 and 2 vs Expt 3, P = <0.05; Expt 4 
vs Expt 5, P = < 0.05 for raw data). The dependence on 
feedback is thus consistent both with a bootstrapping 
hypothesis and the E D L  rule. We remind that in tabula 
rasa HyperBF-like models learning takes place in two 
distinct ways: unsupervised learning is required to estab- 
lish, create or tune the "centers" (unless they already all 
exist, e.g. as neurons tuned to many different optimal 
stimuli), whereas supervised learning determines the ap- 
propriate "synaptic" weights for the coefficients c (cf. 
Fig. 10). The first type of learning does not require 
feedback while the second does. Of  course, if appropriate 
centers are already available prior to learning---e.g, as 
units tuned to oriented bars- -boots t rapping  may be 
possible even without any labeled examples. 

There are, of  course, other models that do not require 
feedback. We plan to explore such models in the context 
of  a theory that will take into account not only the 
psychophysical data but also physiological and biophysi- 
cal constraints. Here we remark only that at some level 
of  abstraction some of these unsupervised models are 

equivalent to a network such the HyperBF-like network 
of Fig. 10 in which the coefficients c have already been 
set and the centers of  the basis functions adapt their 
tuning--such as directional tuning of oriented cells--in 
an unsupervised fashion as the system is exposed to new 
(unlabeled) examples of  the task. 

The experiments summarized in Fig. 3 point to 
another aspect of  perceptual learning that is relevant for 
any biological model: the t ime-course of  learning. It 
seems that within one session learning reaches an asymp- 
totic performance that can, however, improve rapidly 
the day after. This double-sigmoid behavior makes 
intuitive sense and may be connected with the (different) 
findings of  Karni  and Sagi (1991). Clearly, no period of  
rest is required to obtain improved performance in our 
task, and no improvement seems to occur during the 
period of rest. One might speculate that two opponent 
processes are evident in the graphs presented in this 
paper: learning improves performance, while fatigue 
tends to decrease performance during each session. 

Our results show that perceptual learning is quite 
variable between observers, but that it is specific in most 
observers for the visual field position, for the orientation 
of the stimulus, for the eye that learned and for the exact 
task. Learning does not require feedback, even with 
subthreshold stimuli, and can be described by means of 
a modified HyperBF-based model that uses prior infor- 
mation about  visual stimuli. 
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