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|———— By S. Edelman and T. Poggio ———

ooking around, we perceive the world as a collec-

tion of objects rather than as an amorphous aggre-

gate of texture and color. The proficiency of our
visual system in constructing a sensible interpretation of
the surrounding scene tends to mask the enormous com-
plexity of vision, considered as an information processing
task. Stated concisely, this task is to interpret the image
formed on the retinal mosaic in terms of physical objects
and situations, arriving eventually at a description that in
most cases can be put into words.

We recognize an object when it appears to us sufficiently
similar to its representation in our memory. This com-
mon-sense notion of what it means to recognize some-
thing serves well to stress that there are two aspects to the
recognition problem: representation and comparison.

S. EDELMAN and T. PoGGIo are with the Center for Bio-
logical Information Processing, Department of Brain and
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Representation has to do with the storage of visual infor-
mation; comparison relates to its processing. The repre-
sentation/processing duality is one of the foundations of
Marr’s approach to understanding vision.! According to
Marr, solving a problem in computer vision involves com-
bining an appropriate scheme for information representa-
tion with computational algorithms capable of deriving
that representation, and, finally, finding computer archi-
tecture suitable for both tasks.

The problem of visual recognition

Theories of visual recognition may be roughly classified
according to the kind of object representation they postu-
late. One possible dimension for such classification is the
extent to which a representation is pictorial, that is,
“looks” like the real-world object it stands for. (See Ref. 2
for a discussion of related issues.) So far, two approaches
that may be placed at the extremes of the pictoriality scale
have drawn most of the research efforts.

The first approach assumes that objects have certain in-
variant visual features that are commom to all their views
and to all admissible variants within an object category,
and differ between categories.? If # different properties are
measured for each view of an object, the results may be
considered as points in an #-dimensional real space R".
The measurement can then be described by a mapping f:
R2— R". The image of the set of all possible views of an
object and its admissible variations under the mapping f
defines an invariant representation of that object. This
representation could be useful for object recognition, pro-
vided that the subspaces of R” that correspond to different
objects are easily separable. A viewed object would then
be recognized by determining the subspace of R" within
which its-image under f falls. Note that the feature space
approach is non-pictorial. It represents objects as lists of
features that are disembodied in the sense that their posi-

Continued on page 10



Continued from page 8
tion (either in the image plane or in the real world) is not
explicitly used in recognition.

The other extreme calls for maintaining a three-dimen-
sional model, or at least a sufficiently complete set of pos-
sible views, for each object.*¢ Typically, an object is recog-
nized by a three-stage process. First, a set of key features is
identified in the image. Many candidate sets are usually
detected. Second, the pose of the object is computed from
the relative positions of the features and the 3-D model is
appropriately transformed and projected into the image
plane, or an appropriate view is chosen. Finally, the degree
of fit between the transformed model and the image is as-
sessed. The second and the third stages must be repeated
for every candidate feature set and for every possible mod-

el. Recognition occurs for those models that lead to a close
enough fit.

A biologically plausible recognition scheme

The main factor limiting the theoretical and practical
value of the feature-space approach is the difficulty of
choosing features that are invariant with respect to object
pose and at the same time allow fast and robust distinction
among the possible objects. The pictorial approach is
more successful in practice, but seems in several respects
incomplete as a general theory of object recognition in the
human visual system.

For one thing, it is clear that no such theory can be
purely shape-based. It is hard to believe that we rely by
and large on three-dimensional shape comparison to tell,
say, a cat from a banana. On the contrary, it seems that
people normally use every possible shortcut to arrive at a
quick classification. Progressively more and more infor-
mation may be used if the outcome is ambiguous, or if the
task demands it. ,

Another characteristic of the pictorial approach that is
biologically implausible is its assignment of an equal status
to all known objects when trying to interpret a scene: ev-
ery known object is potentially present as its presence is
tested for.* Again, we do not seem even to consider com-
paring a yellow-green gently curing elongated blob to our
model of a cat to find out what it is.

These arguments suggest the following three-stage
scheme as a model of the recognition process in human
vision (see also Ref. 7):
® Selection: segmenting the image into regions that are
likely to correspond to single objects. In the banana recog-
nition example, the peculiar color would probably suffice
to distinguish it from the background, although other
cues, such as intensity and depth, might be necessary if

*In addition, if no segmentation information is available prior to rec-
ognition, every possible combination of the key features must be pro-
cessed by the pose recovery and fit assessment mechanism.
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So far, computer vision systems have not
been overly successful in segmenting
single static images of natural scenes.

there is an entire bunch of bananas out there.

m Indexing: defining a small set of candidate objects that
are likely to be present in the image. In the case of a ba-
nana, the color can serve for that purpose, too, but note
also how its outline narrows down the set candidates to
exclude all complex and articulated objects.

m Verification: testing each of the candidates to find the
best match to the image. At this stage, the system can af-
ford to perform complicated tests, since the number of
candidate objects is small. For example, if there are
grounds to believe that a banana-colored boomerang may
be present in the image, the system could perform three-
dimensional shape matching of a boomerang model, as-
sisted by depth information obtained from the image.

m Segmentation

The utility of an early segmentation of a scene into
meaningful entities lies in the great reduction of complex-
ity of scene interpretation. Each of the detected objects can
in turn be subjected to separate recognition, by comparing
it with object models stored in memory. Without prior
segmentation, every possible combination of image primi-
tives such as lines and blobs can in principle constitute an
object and must be checked out.

At times, achieving early segmentation can be quite dif-
ficult. It is still disputed, for example, whether the human
visual system segments a black-and-white photograph of a
scene before recognizing objects present in it, or whether
the objects only appear to be distinct because we become
aware of their separate identities through recognition. So
far, computer vision systems have not been overly success-
ful in segmenting single static images of natural scenes.?-?
It is reasonable to assume, however, that biological visual
systems work reliably in the real world mainly because
they never depend on any single visual cue. The amount of
segmentation-related information that can be extracted
even from a single gray-scale image may be greater than it
originally appears. 10:11

Ideally, the outcome of the segmentation stage is several
simple closed curves, the interiors of which correspond to
single objects (as yet unidentified) and the exterior of
which constitutes the background. Sharp changes of
brightness (brightness edges) and discontinuities in depth,



motion, texture, and color can all arise from physical
boundaries between objects and are therefore good candi-
dates for image segmentation boundaries. Segmented re-
gions may be labeled with locally constant or slowly
changing information such as color or texture. Thus, the
representation on which the subsequent processing oper-
ates looks much like a cartoon. It is important to realize
that segmentation does not need to be always correct to be
useful. In fact, it is impossible to develop a perfect, low-
level segmentation scheme.

m  [ndexing

Although one cannot hope to achieve an ideal segmen-
tation in real-world situations, partial success is sufficient
if the indexing process is robust. Assuming that most ob-
jects in the real world are redundantly specified by their
local features, a good indexing mechanism would use such
features to overcome changes in viewpoint and illumina-
tion, occlusion, and noise.

What kind of feature is good for indexing? Reliably de-
tected lines provided by the integration of several low-level
cues in the process of segmentation may suffice in many
cases. Simple viewpoint-invariant combinations of primi-
tive elements, such as two lines forming a corner, parallel
lines, and symmetry are also likely to be useful. 41213 [de-
ally, only 2-D information should be used for indexing,
although it may sometimes be augmented by qualitative 3-
D cues such as relative depth.

The power of feature-based indexing would be in-
creased if a shallow hierarchy is introduced into the con-
cept of “feature,” that is, if relatively stable and coherent
parts of objects (such as the tail of a horse or the pointed
ears of a cat) are considered features just like the charac-
teristic shape and color of a banana.

m  Verification

We conjecture that hierarchical indexing by a small
number (two or three) features that are spatially localized
in 2-D sulffices to achieve useful interpretations of most
everyday scenes. In general, however, further verification
by task-dependent routines'# or precise shape matching,
possibly involving 3-D information 47°1517 is required.

Parallel integration of cues for segmentation

Note that while the verification routines are situation-
dependent and may involve serial attentional mechanisms,
segmentation and indexing can in principle be carried out
in parallel over large portions of the visual field.

In the last few years, the Vision Machine project has
explored the idea that a major goal of the parallel integra-
tion stage of low-level vision modules is to compute a map

of the discontinuities in the scene, somewhat similar to a
cartoon or a line drawing. The description that we as-
sumed is contour- and region-based: discontinuities in the
physical properties of surfaces are sought together with
properties of the enclosed regions. Later, recognition algo-
rithms may make good use of the depth, color, and texture
of a region, in addition to the outlines of the discontinui-
ties in depth, color, and texture.

Poggio et al.181? have argued that finding surface dis-
continuities in several early vision modules such as stereo,
motion, texture, and color can be better achieved by inte-
grating them with each other and with intensity edges. (In
the following, edge detection will refer to the task of tak-
ing appropriate derivatives of the image data and possibly
marking pixels that correspond to sharp changes of inten-
sity.)

We have proposed!$:20 to expand the integration
scheme to include the labeling of discontinuities according
to their physical origin. To illustrate the importance of la-
beling via integration, consider an edge that is not detected
by the stereo module. The existence of this edge in the
color module will strongly suggest an albedo or specular
discontinuity, whereas its absence in the color module will
suggest a shadow or orientation discontinuity.

One may further argue that the flexibility and robust-
ness of human vision in computing contour-like descrip-
tions of a scene rely on the simultaneous use of several
vision cues and their integration. It should be clear, how-
ever, that none of the vision cues is strictly necessary for a
task such as recognition: humans manage to perform rath-
er well on images devoid of color, motion texture, and
depth cues. On the other hand, discontinuities of surface
properties are convenient locations where the output of
each of the vision modules may be coupled with the image
data: surface discontinuities usually originate a sharp
change in the image intensity, independent of the specific
illumination, and dependent mainly upon shape and re-
flectance properties.

m The vision machine system

In this section, we will review recent work on integrat-
ing visual modules detecting discontinuities'8'1%°21, using
the Vision Machine system.

. . . humans manage to perform rather
well on images devoid of color, motion,
texture, and depth cues.
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FIGURE 1. Overall organization of the integration stage.

The overall organization of the system is shown in Fig.
1. The image(s) are processed through independent algo-
rithms or modules corresponding to different visual cues,
in parallel. Edges are extracted using Canny’s edge detec-
tor. Stereo computes disparity from the left and right im-
ages. The motion module estimates an approximation to
the optical flow from pairs of images in a time sequence.
The texture module computes texture attributes, such as
density and orientation of textons.?? The color algorithm
provides an estimate of the spectral albedo of the surfaces,
independently of the effective illumination, that is, illumi-
nation gradients and shading effects, as suggested by Hurl-
bert and Poggio. 23

Early vision modules—in this case, stereo, motion, col-
or, and texture—operate on the image data. Their output
is noisy, possibly sparse (for stereo and motion, for in-
stance, depending on the specific version of the algorithm),
sometimes not unique (some motion algorithms provide
only one component of the optical flow), and does not
explicitly represent discontinuities. Thus, the output of
each module must be regularized to counteract noise, “fill
in” the sparse data, and restore uniqueness.

The constraints that can be exploited to achieve this
goal are smoothness (depth, motion, texture) or piecewise
constancy (color) on the output of each module. Ideally,
one would like to impose smoothness or piecewide con-
stancy everywhere but at discontinuities. This is a stage of
approximation and restoration of data, performed by us-
ing a Markov Random Field model. Simultaneously, dis-
continuities are found in each cue. Prior knowledge of the
behavior of discontinuities exploits, for instance, the fact
that they are continuous lines, not isolated points. Detec-
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tion of discontinuities is aided by the information provid-
ed by brightness edges. Thus, each cue—disparity, optical
flow, texture, and color—is coupled to the edges in bright-
ness.

The full scheme involves finding the various types of
physical discontinuities in the surfaces—depth discontin-
uities (extremal edges and blades), orientation discontinui-
ties, specular edges, albedo edges (or marks), shadow
edges—and coupling them with each other and back to
the discontinuities in the visual cues, as illustrated in Fig.
1. So far, we have implemented only the coupling of
brightness edges to each of the cues provided by the early
algorithm. As we will discuss later, the technique we use to
approximate, to simultaneously detect discontinuities, and
to couple the different processes is based on MRF models.
The output of the system is a set of labeled discontinuities
of the surfaces around the viewer. In our implemented ver-
sion of the system, we find discontinuities in disparity, mo-
tion, texture, and color. These discontinuities, taken to-
gether, represent a “cartoon” of the original scene that can
be used for recognition and navigation (along with inter-
polated depth, motion texture, and color regions).

m Integration and segmentation with MRFs

How can this be done? We have chosen to use the ma-
chinery of Markov Random Fields (MRFs), initially sug-
gested for image processing by Geman and Geman.**
Consider the prototypical problem of approximating a
surface given sparse and noisy data (depth data), on a reg-
ular 2-D lattice of sites. We first define the prior probabili-
ty of the class of surfaces in which we are interested. The
probability of a certain depth at any given site in the lattice
depends only upon neighboring sites (the Markov proper-
ty). Because of the Clifford-Hammersley theorem, the pri-
or probability has the Gibbs form:
1 vy

T

Pf)=7e

(1)
where Z is a normalization constant, T is called tempera-
ture, and U(f) = o;Ui(f) is an energy function that can be
computed as the sum of local contributions from each lat-
tice site i. The energy at each lattice site Uj(f) is, itself, a
sum of the potentials, U,(f), of each site’s cliques. A clique
is either a single lattice site or a set of lattice sites such that
any two sites belonging to it are neighbors of one anoth-
er.25:26 As a simple example, when the surfaces are expect-
ed to be smooth (like a membrane), the prior energy can
be given in terms of:

Uif) =2 (i — f)? 2)

J

where ; is a neighboring site to 7 (that is, 7 and j belong to
the same clique).



If a model of the observation process is available (that
is, a model of the noise), then one can write the condition-
al probability P(glf) of the sparse observation g for any
given surface f. Bayes’s theorem then allows one to write
the posterior distribution:

P(flg) = % UL 3)

In the example of Eq. 2, we have (for Gaussian noise):

Ulflig =2 (fi— P +ovi(fi— g (4

j

where y; = 1 only where data are available, and other-
wise y; = 0. More complicated cases can be handled in a
similar manner.?

The maximum of the posterior distribution or other re-
lated estimates cannot be computed analytically, but sam-
ple distributions with the probability distribution of Eq. 3
can be obtained by means of Monte Carlo techniques such
as the Metropolis algorithm.?” These algorithms sample
the space of possible surfaces according to the probability
distribution P(fig) that is determined by the prior knowl-
edge of the allowed class of surfaces, the model of noise,
and the observed data.

In our implementation, a highly parallel computer gen-
erates a sequence of surfaces from which, for instance, the
surface corresponding to the maximum of P(flg) can be
found. This corresponds to finding the global minimum of
U(fig) (simulated annealing is one of the possible tech-
niques). Other criteria can be used: Marroquin has shown
that the average surface f under the posterior distribution
is often a better estimate that can be obtained more effi-
ciently simply by finding the average value of f at each
lattice site.?8

One of the main attractions of MRF models is that the
prior probability distribution can be made to embed more
sophisticated assumptions about the world. Geman and
Geman2* introduced the idea of another process—the line
process—located on the dual lattice and explicitlh repre-
senting the presence or absence of discontinuities that
break the smoothness assumption (Eq. 2). It is, in fact,
possible to extend the energy function of Eq. 4 to accom-
modate the interaction of more processes and of their dis-
continuities. In particular, we have extended the energy
function to couple several of the early vision modules
(depth, motion, texture, and color) to sharp changes of
brightness in the image.?’

This is a central point in our integration scheme: here
we assume that changes of brightness guide the computa-
tion of discontinuities in the physical properties of the sur-
face, thereby coupling surface depth, surface orientation,
motion, texture, and color each to the image brightness
data and to each other. The reason for the primary role of

the gradient of brightness, as conjectured here, is that
changes in surface properties usually produce large bright-
ness gradients in the image.

As already mentioned, we have been using the MRF
machinery with appropriate prior energies to integrate
edge brightness data with stereo, motion, color, and tex-
ture information on the MIT Vision Machine System de-
scribed earlier. Figure 2 shows some results. The union of
the discontinuities in depth, motion, and texture for the
scene gives a “cartoon” of the original scene. Notice that
this “cartoon” represents discontinuities in the physical
properties of 3-D surfaces that are well defined, whereas
brightness “discontinuities” are not. Our integration algo-
rithm achieves a preliminary classification of the bright-
ness edges in the image, in terms of their physical origin.

A more complete classification may be achieved by im-
plementing the full scheme of Fig. 1. The lattices at the top
classify the different types of discontinuities in the scene:
depth discontinuities, orientation discontinuities, albedo
edges, specular edges, and shadow edges.2° The set of such
discontinuities in the various physical processes seems to
represent a good set of data for later recognition. In some
preliminary experiments, we have successfully used a par-
allel, model-based recognition system?2° on the discontinui-
ties (stereo and motion) provided by our MRF scheme.

Our present implementation represents a subset of the
possible interactions shown in Fig. 1, itself only a simpli-
fied version of the organization of the likely integration
process. As described elsewhere,21°25 the system will be im-

FIGURE 2. A cartoon-like representation of two objects
segmented from the background using depth, motion and
texture cues.
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Real-world objects never present their
entire surface to an observer at
the same time.

proved in an incremental fashion, including pathways not
shown in Fig. 1, such as feedbacks from the results of inte-
gration into the matching stage of the stereo and motion
algorithms.

The highly parallel algorithms we have outlined map
quite naturally onto an architecture such as the Connec-
tion Machine, which consists of 64 K simple 1-bit proces-
sors with local and global connection capabilities. The
same algorithms also map onto VLSI architectures of fully
analog elements (we have successfully experimented with
a version of Eqs. 5 and 6, in which /is a continuous vari-
able), mixed analog and digital components, and purely
digital processors (similar to a much simplified and spe-
cialized Connection Machine).

The next step: parallel indexing
by localized features

Real-world objects never present their entire surface to
an observer at the same time. Thus, from any given van-
tage point, only a part of an object’s feature set is visible.
By rotating the object in 3-D, the observer can make some
of the visible features become occluded and others appear.
Equivalently, the same results may be achieved by chang-
ing the vantage point of the observer with respect to the
object. Vantage point is fully specified by two parameters,
corresponding to the latitude and the longitude of the eye
positioned on an imaginary sphere centered at the object.
The remaining degree of freedom in this system corre-
sponds to a rotation of the eye around the viewing direc-
tion. Such rotation does not affect the apparent shape of
the object and is of no concern to us here.

The viewing sphere may be naturally divided into re-
gions or aspects over each of which the set of visible fea-
tures is constant.3° Boundaries of these regions are defined
by visual events: occlusion or appearance of features. A list
of all aspects of an object, along with feature visibility in-
formation for each aspect, constitutes a compact feature-
based description of the object. Let the indexing be per-
formed by counting matching features for each model and
carrying out a “winner take all” (WTA) operation. The
result will then be relatively insensitive to noise and partial
occlusion, because of the locality of the features and be-
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cause of the dampening action of the WTA step.

The aspect-specific feature-based representation has
been shown to work for recognizing polyhedra.3! Can this
approach be extended to real-world vision without losing
its inherent insensitivity to noise and occlusion? One pos-
sibility involves using features that are localized in the two
dimensions of the image plane. In this scheme, called CLF
for conjunction of localized features, a possible presence
of an object is signaled if most of its characteristic features
are detected at their proper positions with respect to one
another. The basic tenets of the biologically motivated
CLF scheme are as follows:

m The visual system uses converging data from feature de-
tection units to capture and encode significant events in
terms of conjunction of their characteristic features.??

m Representation of objects that is invariant with respect
to certain transformations (such as the change of view-
point) may be achieved by explicitly tying together repre-
sentations of specific appearances of the objects, through
an automatic learning process.33

# The number of units needed for such explicit representa-
tion may be significantly reduced through preprocessing.

FIGURE 3. The unit R in A: represents the conjunction
P(x1,y1) & Q(xz,y2). It is likely to arise by chance, if the
number k of projections emanating from each of the units
in A1 is right. An optimal value for k can be computed,
based on a trade-off between low cross-talk among repre-
sentations and high probability of any given pattern in A1
having a representation in Az.



For example, foveation largely obviates the need for trans-
lation-invariant representation, while certain properties of
the retinocortical mapping may partially counter the influ-
ence of size variation.3* Figure-ground separation (e.g., by
the method described in the previous section) is also im-
portant.

m Under real-world, real-time conditions, the information
necessary for associating different views of an object
would be provided by the pattern of the optic flow due to
the observer’s movement with respect to the object.?* Fur-
thermore, the analysis of this flow3638 could endow the
representation with metric structure, that is, representa-
tions of similar aspects of objects would be made to reside
close to each other (closeness here is defined in terms of
tight association rather than physical proximity).

CLF is easily implemented in parallel, by assigning pro-
cessors to feature detectors and representation units and
providing for the necessary connections (see Fig. 3). We
believe that the values of connection strength needed to
encode the conjunction mapping and its metric structure
can be computed automatically. Encouragingly, conjunc-
tion Boolean formulae are shown to be effectively learn-
able from examples.?® Learnability of CLE, as well as its
computational aspects, are currently under investigation.

The human visual system is capable of forming split-
second interpretations of complex scenes that may include
any of thousands of possible objects, arranged in largely
unpredictable configurations. To achieve comparable per-
formance, machine vision systems may have to integrate
several visual cues. Once computed, the integrated repre-
sentation constitutes a natural solution to the old problem
of object segmentation. It may also serve as a basis for
development of simple, parallel schemes for indexing or
object classification.
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