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We describe experiments with a versatile pictorial prototype-based learning scheme for 3-D
object recognition. The Generalized Radial Basis Function (GRBF) scheme seems to be
amenable to realization in biophysical hardware because the only kind of computation it
involves can be effectively carried out by combining receptive fields. Furthermore, the
scheme is computationally attractive because it brings together the old notion of a
““grandmother”” cell and the rigorous approximation methods of regularization and splines.
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1. INTRODUCTION

An intelligent visual system is expected to be able to retain representations of
objects it encounters and to recognize these objects later, under potentially different
viewing conditions. This requires the solution of at least three difficult problems. The
first problem is the variability of object appearance due to changing illumination,
which may be addressed by working with relatively stable features, such as intensity
edges1 (preferably, in conjuction with cues from visual motion and stereo?), rather
than with raw intensity images. The second problem, the removal of the variability
due to unknown pose of the object, may be solved by first hypothesizing the viewpoint
(e.g. using information on feature correspondences between the image and a model),
then computing the appearance of the model of the object to be recognized from that
viewpoint and comparing it with the actual image.>~¢ Generally, recognition schemes
of this type employ 3-D models of objects. Automatic learning of 3-D models is the
third difficult problem faced by state-of-the-art recognition schemes. Few of these
schemes learn to recognize objects from examples and most use 3-D models acquired
through user interaction (see, e.g. Ref. 6) or through active sensing (e.g. range
data”"®).

In this paper, we describe an implemented scheme for recognizing wire-frame
objects that addresses two of the three aspects of the recognition problem mentioned
above: learning object representations and generalizing recognition to novel view-
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points. We base our approach on a recently proposed network scheme for the
approximation of multivariate functions, by couching the problem in terms of the
synthesis of a module that generates a representation of an object (e.g. produces a
“‘standard”’ view) given any of its perspective views (Fig. 1).

2. THEORETICAL BASIS

2.1. How Much Information is Necessary for Learning 3-D Structure?

Structure from motion theorems,”'? pioneered by Ullman,'' indicate that full
information about the 3-D structure of an object represented as a set of feature points
(at least five to eight) is present in just two of their perspective views, provided that
corresponding points are identified in each view. A view is represented as a 2N vector
X1, Y1, X2, Y2, - - -» Xn, yn Of the coordinates on the image plane of N labeled and
visible feature points on the object. Here and in most of the following we assume that
all features are visible, as they are in wire-frame objects. The generalization to opaque
objects follows by partitioning the viewpoint space for each object into a set of
““aspects”’,'? corresponding to stable clusters of visible features. In principle, there-
fore, having enough 2-D views of an object is equivalent to having its 3-D structure
specified.

2.2. Learning as Hypersurface Interpolation

This line of reasoning, together with properties of perspective projection, suggest
(a) that for each object there exists a smooth function mapping any perspective view
into a ‘‘standard”’ view of the object and (b) that this multivariate function may be
synthesized, or at least approximated, from a small number of views of the object.
Such a function would be object specific, with different functions corresponding to
different 3-D objects. Furthermore, the application of the function that is specific for

RBF module RBF module
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Fig. 1. Application of a general module for multivariate function approximation to the problem of
recognizing a 3-D object from any of its perspective views. In (a), the module is trained to produce a vector
representing the standard view of the object, given a set of examples of random perspective views of the
same object. The module is also capable of recovering the viewpoint coordinates 9, ¢ (the latitude and the
longitude of the observer on an imaginary sphere centered at the object) that correspond to the training
views. When given a new random view of the same object (b), the module recognizes it by producing the
standard view. Other objects are rejected by thresholding the Euclidean distance between the actual output of
the module and the standard view.
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one object to the views of a different object is expected to result in a ‘‘wrong’
standard view that can be easily detected as such.

Synthesizing an approximation to a function from a small number of sparse
data—the views—can be considered as learning an input—output mapping from a set
of examples.'*'* A powerful scheme for the approximation of smooth functions has
been recently proposed under the name of Generalized Radial Basis Functions
(GRBFs) and shown'*'* to be equivalent to standard regularization'>:!® and general-
ized splines.'*'7-'8 The approximation of f : R" — R is given by

K
fx) = D G(x — t.]), (1

a=]

where the coefficients ¢, and the centers t, are found during the learning stage and G
is an appropriate basis function (see Refs. 13, 14), such as the Gaussian. If the
function f is vector-valued, each component f; is computed using Eq. 1 with the
appropriate ¢;,, in which case the equation is precisely equivalent to the network of
Fig. 2. The function f(x) in Eq. 1 minimizes the error functional

M
Hif] = Zl (yi — fFx))? + A|PF]? 2

on the set of examples. In Eq. 2, P is usually a differential operator and A is a positive
real number, called the regularization parameter.!” The radial function G is fully
determined by the stabilizer P in Eq. 2 and therefore by the prior assumptions on the
function to be approximated, such as its degree of smoothness.'> P also determines
whether a polynomial term of the form 3,; d;p;(x) should be added to the right-hand
side of Eq. 1. In most of the experiments described in Sec. 3.6 we omitted the
polynomial term and used the Gaussian as the radial basis function. The optimal width
o of the Gaussian RBFs can be found, along with ¢, and t,, by minimizing H in
Eq. 2.

In a special simple case, there are as many basis functions (K) as views in the
training set (M; in general, K =< M). The centers of the radial functions are then fixed
and are identical with the training views. Each basis unit in the ‘‘hidden’ layer
computes the distance of the new view from its center and applies to it the radial
function. The resulting value G(||x — t,|), can be regarded as the “‘activity’’ of the
unit. If G is Gaussian, a basis unit will attain maximum activity when the input
exactly matches its center. The output of the network is a linear superposition of the
activities of all the basis units in the network.

Figure 2(b) illustrates the special case of Gaussian basis functions. A multi-
dimensional Gaussian can be synthesized as the product of two-dimensional Gaussian
receptive fields operating on retinotopic maps of features. The solid circles in the
image plane represent the 2-D Gaussians associated with the first radial basis function,
which corresponds to the first view of the object. The dotted circles represent the 2-D
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2D input array

products of
receptive fields

Fig. 2. (a) A network representation of approximation by Generalized Radial Basis Functions. (b) shows
an equivalent interpretation of (a) for the case of Gaussian radial basis functions. The solid circles in the
image plane represent the 2-D Gaussians associated with the first radial basis function, which corresponds to
the first view of the object. The dashed circles represent the 2-D receptive fields that synthesize the
Gaussian radial function associated with another view.
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receptive fields that synthesize the Gaussian radial function associated with another
view. The Gaussian receptive fields transduce positions of features, represented
implicitly as activity in a retinotopic array, and their product ‘‘computes’ the radial
function without the need of calculating norms and exponentials explicitly.?

The weights C are found during learning by minimizing a measure of the error
between the network’s prediction and the desired output for each of the examples.
Computationally, this amounts to inverting a matrix (when M # K, the generalized
inverse is computed instead) and is equivalent to finding an optimal generalized spline
approximation (interpolation when A = 0 in Eq. 2) with fixed knots.

If the centers of the basis functions are allowed to move (which may be desirable,
e.g. when the number of basis functions is less than the number of views in the
training set), the scheme becomes equivalent to a spline with free knots. The centers
may be updated during learning by a gradient descent minimizing the approximation
error expressed by Eq. 2. A further generalization may be achieved by using a
weighted norm in Eq. 1:

[x = tol3 = x — t) " WWE —t,) . 3)

Updating the centers is equivalent to modifying the corresponding °‘prototypical
views’’ and corresponds to task-dependent clustering. Finding the optimal weights for
the norm is equivalent to a transformation of the input coordinate space and
corresponds to task-dependent dimensionality reduction. A more detailed description of
the GRBF approximation technique, of its theoretical motivation and of its relation to

other techniques such as backpropagation, can be found in Refs. 13 and 14 (see also
Ref. 19).

3. IMPLEMENTATION AND PERFORMANCE

We have conducted an empirical investigation of the applicability of GRBFs, under
a variety of conditions, to the problem of shape-based object recognition. The results
of a series of experiments that involved simple computer-generated shapes are
described below.

3.1. Input Objects

Objects for testing the recognition scheme were created using the Symbolics
S-Geometry 3-D graphics modeling system. The objects were 5-segment random wire
frames® (Fig. 3). All the objects were positioned in such a manner that their centers of

* Implementing a multidimensional receptive field as a product of 2-D receptive fields all of which look at
the same retina can result in ‘‘cross-talk’’ between different features if the spatial extent of the receptive
fields is not limited. This does not seem to be a problem with Gaussian receptive fields, which respond very
weakly to features that are far from the field’s center.

® In some of the experiments, 7-segment wires or other objects such as wire-frame cubes and octahedra
were used.
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Fig. 3. Two examples of wire objects used in the experiments. The wires were created by a random walk
in 3-D. They were encoded for training and subsequent recognition by projecting the vertices onto an
imaging plane (under either orthographic or perspective projection). The resulting vector of x, y-coordinates
could be further preprocessed to obtain different encodings (see Sec. 3.2).

mass coincided with the origin of the 3-D coordinate system defined by the modeling
program. Different views of the objects were obtained by rotating the S-Geometry
“‘camera’ around the 3-D origin, so that it could assume any position specified by
two viewpoint coordinates, 6 and ¢, corresponding to the latitude and the longtitude
_on an imaginary sphere centered at the object. No rotation of the camera around its
optical axis was allowed.

3.2. Input Representations

We have experimented with several different methods of encoding object shape, all
of which employed exclusively the 2-D information available in the projection of the
objects’ vertices onto the imaging plane. The first and most straightforward method
was used in most of the experiments described in this section.

(1) XY-coordinates. A list of the screen coordinates of the wire’s vertices,
(X{, Y1, - - -» Xn, yn). The origin of the screen coordinate system was at the upper
left corner of the screen, and the coordinates varied in the [0 . . . 127] range.

(2) Centered XY-coordinates. Same as previous, but with the origin at the screen
projection of the 3-D center of rotation common to all the objects.

(3) Segment lengths. Screen distances between the projections of the successive
vertices of the objects.

(4) Normalized segment lengths. Same as previous, but with the lengths divided by
the length of the first segment.

(5) Angles. Angles formed by the projections of the successive segments.

(6) Angles + lengths. A mixed encoding, combining the angles and the segment
lengths in one heterogeneous vector.

Note that the fifth encoding method (angles) leads to the invariance of recognition
performance with respect to translation, scaling and image-plane rotation of the
objects. Another point of interest is that nothing in the present approach precludes
information other than 2-D shape from being incorporated into the input representa-
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tion. In particular, 3-D shape cues (obtained, e.g. through binocular stereo) can be
used within the same framework depicted in Fig. 2.

3.3.  Output Representation

As depicted in Fig. 1, the recognition module was trained to produce a standard
output for any input that showed a view of the target object. The output representation
was identical to the input one (as a matter of fact, the first input view was chosen as
the standard one). However, in addition to the standard view of the object whose
arbitrary view was presented as input, the system was also capable of recovering other
information about that object, namely, its attitude (as expressed by the viewpoint
coordinates 6 and ¢).€

3.4. Test Paradigm

The primary measure of the system’s performance was the standard view recovery
error, defined as the Euclidean distance between an actual output and the ideal one.
Two statistical measures of performance were computed in each of the experiments to
be described below. These measures involved training the system on each of ten
different wire objects and comparing the standard view recovery errors for views of
the trained object with those of the other nine objects. The errors for the trained object
should be small, compared to the errors for the other objects (Fig. 4). Ideally, the
smallest error on a non-target object (call it miNgontarger) Should be larger than the
largest error on the target (maxege): @ MIN/MAX ratio greater than 1 is required for
a perfect separation between the target and other objects using a simple threshold
decision. A less conservative measure is the ratio of the averages of the two error
classes, AVG/AVG.4

3.5. Example of Operation

Two examples of the module’s operation, one in which the input is the training
object, and another in which it is a different but similar object, appear in Fig. 5. The
top row shows the standard view of a wire-frame object, superimposed on its estimate
by the GRBF network (large black dots), when its input is a random view of the same
object (second from top row). The fit is much closer than in the bottom two rows,
where the input view belongs to a different object.

From Fig. 5 it appears that arbitrary views of the target object cause the GRBF
module to output a vector that is close to the ideal (trained) one. It also appears that
views of non-target objects are transformed into scaled versions of the ideal vector, so
that Y., = kYo u(ideal), where k < 1. To understand why that happens, it is

¢ We have also experimented with a scalar output representation; see Sec. 3.6.8.

d Standard statistical methods of parameter estimation and hypothesis testing may be used to translate the
means and the standard deviations of Mifoncargets M argers AVErarget ANA AVEnontarget INLO probabilities of
Type I and Type II recognition errors (see e.g. Ref. 20). Since these methods involve table lookup of
probability distributions, we did not use them on-line. Characteristically for our experiments, a ratio of
AV nontarget 10 AV arger Of 5.0 sufficed to impose a 0.001 upper bound on the probabilities of both Type I and
Type II errors.
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Fig. 4. Definitions of the AVG/AVG and the MIN/MAX performance criteria used throughout the paper.
The error here is defined as the Euclidean distance between the standard view of the target and the actual
output of the system (the smaller the error, the greater the likelihood that the input view belongs to the
target). In this illustration, the average error for non-targets is considerably greater than that of target views.
Consequently, there is a good chance of correct recognition of the target (and correct rejection of
non-targets). An ideal performance requires that there be no overlap between the error value ranges
corresponding to target and non-target views, in which case MIN/MAX > | and the two classes of views
are separable by thresholding.
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Fig. 5. Examples of the module’s operation. (a) Standard view of a wire-frame object (top row),
superimposed on its estimate by the GRBF network (large dots), when its input is a random view of the
same object (second from top row). The fit is much closer than in the bottom two rows, where the input
view belongs to a different object. The number of training views M = 40, the number of RBFs K = 20 and

the range of attitudes 6, ¢ is 0° to 90°. A naive fixed-step gradient descent (with a small number of steps)
was used to obtain the optimal positions of the GRBF centers.
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Fig. 5 Cont’d. (b) Within a smaller range of 6, ¢ € [0°, 45°], the performance was acceptable with only
two radial basis units: M = 40, K = 2. (Note that in the ‘‘different object’” row the dots signifying the
predicted vertex locations are in most cases off the scale.)

convenient to consider first a linear associative memory that is realized by a matrix
operator C trained to recognize views of a target object by transforming them into a
preset standard vector Y. Since C maps distinct vectors V; to the same vector Y, it
must be singular (it can be shown that the rows of C are all collinear). If the number
of (randomly chosen) training views V; is sufficiently large, there is a good chance that
they span a six-dimensional manifold that, to a first approximation, is a hyperplane in
R*N (see the appendix in Ref. 21). Any new view V will lie within this hyperplane
and will be mapped to a scaled kY. Views of non-target objects will tend to be
orthogonal to the space spanned by the training views, resulting in k= 0. An
analogous argument can be made for the RBF scheme, in which the linear mapping C
is preceded by the application of the radial basis functions G, . The analogy is then
between the original training vectors V; and their images under G, .

3.6. Performance
3.6.1. Effects of receptive field size and of number of centers

In the first experiment, the number K of RBF centers was made equal to the number
M of training views by letting the centers coincide with the views themselves.
Consider Fig. 6, which shows the dependency of the error (distance between actual
and ideal outputs) for random views of the trained object (left column) and the error
for views of other objects (right column), as a function of K and of the size o of the
(Gaussian) basis functions. Figure 6 conveys information as to the relative significance
of the average and worst-case performance of the recognition module over the
depicted range of K and o. The worst-case performance (assessed by comparing the
upper curve in the left column with the lower curve in the right column) lags far
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Fig. 6. Mean error SEM vs. size o of the basis functions, for different number of centers K (number of
training views M = K). Three measures of the error, MIN (lower curves), AVG (middle curves) and MAX
(upper curves) are shown for two input sets: random views of the trained object (left) and views of nine
different objects (right).

behind the average performance (assessed by comparing the middle curves in the two
columns). It should be noted that the role of the outliers that contribute to the
worst-case measure is statistically insignificant, as long as the average performance
does not drop below a certain threshold (corresponding to an AVG/AVG ratio of
about 5).

The next plot provides a direct answer to the question of the optimal combination of
K and o. Under the AVG/AVG measure (Fig. 7 middle column), it is o = 25, for
K = 100 = M (clearly, increasing the number of training views and RBF centers
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Fig. 7. Left: Type I or miss (lower curve) and Type II or false alarm (upper curve) error rates, vs. o, by
K. Middle: AVG/AVG performance index. Right: MIN/MAX performance index (see Fig. 4), vs. o, by K.

improves the performance, but the price in terms of computational resources makes it
probably not worthwhile to increase K and M beyond about 80-100). Under the
MIN/MAX measure, the best performance is achieved for o = 30 (Fig. 7, right
column). The left column of Fig. 7 gives a different perspective on the module’s
performance, by plotting the proportions of Type I and Type II recognition errors vs.
o. Note that having too much interpolation (in this case, o > 25) sharply increases the
probability of a Type Il (false alarm or overgeneralization) error, as expected.

3.6.2. Effect of perspective projection

The result of Ullman and Basri??> on representing objects by linear combinations of
views suggests that recognition posed as a problem in function approximation is better
behaved under orthographic than under perspective projection. We have tested the
GRBF module with two different settings of the distance of the simulated camera from
the objects: ‘‘near’’, in which there was an appreciable perspective distortion, and
“far”’, in which the distortion was almost unnoticeable (this served as an approxima-
tion, of orthographic projection condition). From Fig. 8 it can be seen that doubling the
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Fig. 8. Left: AVG/AVG performance vs. distance from the simulated camera, by number of training views
M (K = M, o = 30.0). The “‘near’’ distance was about seven times the apparent size of the wire objects.

Right: MIN/MAX performance vs. distance from the simulated camera, by number of training views M
(K =M, o=30.0).

distance from “‘near’’ to ‘‘far’”” made no significant difference in the performance.

A separate look at the false alarm and the miss rates (Fig. 9) shows that if camera
distance had any effect, it was on the miss rate. The most prominent effect was the
decrease in the miss rate under orthographic approximation for M = K = 20. This
finding is consistent with the Ullman—Basri theoretical argument for the relative ease
of recognition under the assumption of orthographic projection.

3.6.3. Effect of range of attitudes
If the number of training views is held constant, the performance of the GRBF

module is expected to deteriorate with the increase in the range of the viewpoint

coordinates into which the training views fall. Figure 10 shows that this indeed
happens: for M = K = 40 and o = 30, both the AVG/AVG and the MIN/MAX
measures take a sharp dip when 6, ¢ reach (120°, 240°).

3.6.4. Recovery of attitude

The range of the allowed orientations has a similar influence on the precision of the
recovery of the orientation parameters 0, ¢ (Fig. 11). For M = K = 40 and o = 30,
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Fig. [1. Errors in the viewpoint coordinates 6, ¢ recovered by the module vs. the range of the viewpoint
coordinates (M = K = 40, o = 30.0).

the mean square error of the recovered orientation stays below 10° for 6 < 120°,
¢ < 240°, rising to about 60° for the full range of orientations. Doubling M and K
extends effective recovery of 6, ¢ to the full range of orientations.

3.6.5. Effect of number of vertices

The power of the GRBF module to discriminate between trained object and other
similar objects increases with the increase in the number of vertices used in the
encoding (Fig. 12). The discrimination power is nil (MIN/MAX = 0) for two-vertex
objects, rises steadily with the number of vertices, then starts to drop. This may be
due to an interplay of two factors: the amount of information and cross-talk among
GRBF centers. At least four points on each object are necessary for discrimination.
The more vertices are used, the more information there is for the recognizer to go by,
until cross-talk sets in (which will happen if the size of the basis function o is not
allowed to decrease in proportion with the increased density of object vertices in the
image plane). In human recognition, a similar effect is intuitively expected (30-vertex
wire objects seem to be too complicated to be distinguished by vertex positions alone).

3.6.6. Different input/output representations

The versatility of the present approach to recognition is illustrated in Fig. 13, which
shows a superimposed plot of the MIN/MAX performance vs. the number K of RBF
centers for the regular encoding used throughout the paper (x,y-coordinate vectors)
and a shift, scale, and image-plane rotation invariant encoding (angles between
successive segments of the wire objects). For a six-vertex object, the x,y-coordinate
vector has length 12, while the angles vector has length 4. The relatively smaller
amount of information in the angle encoding puts it at a disadvantage for smaller K’s.
For a large enough K the angle encoding yields higher MIN/MAX ratio, in addition to
possessing desirable invariance with respect to shift, scale, and rotation of the input.

3.6.7. Sensitivity to occlusion

To find out the sensitivity of the GRBF scheme to occlusion, we repeatedly trained
it on views each of whose constituent features had a fixed probability of being



MEMORY-BASED RECOGNITION 51

o 60
8]

c

@

=

.

(<]

Al

e

[

Q

g

>

<

~

3 :

> 1 2 3 [} s 6 7 8 9
< Number of vertices

s

MN/MAX performance

3 7 8 9
Number of vertices

Fig. 12. AVG/AVG and MIN/MAX indices vs. the number of vertices used in training (the data for
number of vertices from 2 to 6 are for six-vertex random wire objects; the data for number of vertices 7 and
8 are for eight-vertex wires; M = K = 60, o = 30.0).

20 40 60 80 100
K, number of RBF centers

MN /MAX performance

Fig. 13. MIN/MAX performance for two types of input encoding: vertex coodinates (solid line) and angles
formed by successive pairs of segments (dashed line; data for six-vertex random wire objects, o chosen
optimal for each encoding, M = K).



52 S. EDELMAN & T. POGGIO

““occluded’” (in which case the corresponding component of the representation vector
was set to 0). Note that more than one feature could be occluded at a time.

The performance of the GRBF module in subsequent testing, plotted vs. the
probability of individual vertex occlusion, is shown in Fig. 14.° It appears from the
figure that satisfactory performance can be expected even when the probability of
having any particular feature occluded is 0.2, in which case about three quarters of the
training views had at least one of the features occluded. Occlusion has had a
somewhat stronger effect on the learning of eight-vertex wires (Fig. 14, right column).

Note that in the present experiment the basic GRBF scheme was not augmented by
any mechanism specifically designed to deal with occlusion. A better insensitivity to
the deletion (occlusion) of features can be achieved by providing a basis function
(center) for each possible subset of features. We conjecture that in practice the
maximum size of necessary feature subsets is rather small. This size could be found
during learning by analyzing the weight matrix W.

3.6.8. Scalar vs. vector output

If a compact output representation is required, it is possible to train the recogniiton
module to produce a scalar ouptut, as opposed to a vector that represents a standard
view. Figure 15 shows that the single-output network performs on the average almost
as well as the network of Fig. 2 (which outputs a standard view vector). The
advantage of the vector-output module may be explained by the larger number of its
free parameters (elements of the C matrix).
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Fig. 14. AVG/AVG and MIN/MAX indices vs. the probability of any given vertex being occluded (left:

six-vertex random wire objects; right: eight-vertex objects). 8, ¢ were confined to one half of the viewing
sphere; K = M = 50 (lower curves), K = M = 100 (upper curves); o = 30.0.

© Although no occlusion was assumed in testing, one can get an idea of the scheme’s sensitivity to this
factor by considering Fig. 12, which shows the effect of the number of features on the discrimination
power.
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Fig. 15. AVG/AVG and MIN/MAX performance for scalar and vector output (data for six-vertex random
wire objects, o = 30, M = K = 80; error bars show standard deviation computed over ten objects). In the
first case, the network is trained to output 1 when it is shown views of the target. In the second case, the
output is a standard view of the target.

3.6.9. GRBF using gradient descent

In most of the experiments described in this report, the GRBF module was trained
without searching for optimal center locations t,, coefficients C or weights W
(Eq. 3). In these cases, the centers were set at some of the training views, the matrix
C was found by a generalized inverse method (see Sec. 2), and an identity matrix was
used as W.

The parameters t, and C obtained in this manner serve as a convenient starting
point for improvement using gradient descent search in the parameter space. The
gradient descent was performed according to the expressions given in Ref. 14." We
have compared the performance improvement for this encoding under three conditions:
changing centers t,, or weights W, or both (the coefficient matrix C was always
allowed to change), for two sets of parameter values. Only trials for which the
gradient descent procedure actually converged were included in the comparison. The
results for M = 40, K = 10 and a full range of viewpoints appear in Table 1. Note
that the best effects were achieved by a combined adjustment of C, t, and W

Since these expressions pertain to the case of a single-output network, we used such a network in this
experiment.
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Table 1. Improvement ratios in the AVG/AVG and the MIN/MAX performance measures caused by 100
steps of gradient descent, with the step size w = 1073 (six-vertex wires, M = 40, K = 10, o = 30.0,
angles encoding, perspective projection, full range of viewpoint coordinates). The numbers are exponentials
of the averages of logarithms of the appropriate measures over ten trials. Training was carried out on one
object and testing on five other objects.

Allowed to change AVG/AVG improvement MIN/MAX improvement
C t,, W 1.59 1.24
C, t, 1.45 0.58
C, W 2.30 0.74

together. A visual example of the performance of the GRBF module with K = 10
centers and M = 40 training views after the adjustment of the centers’ locations
through gradient descent appears in Fig. 5.

3.7. Comparison with Related Schemes

At this point it is natural to ask whether other, simpler network schemes can
perform the recognition task defined in this report as well as the GRBF module. To
address this question, we investigated the performance of three related schemes: linear
associative memory and two versions of the nearest neighbor classifier (with and
without feature correspondence).

3.7.1. Linear associative memory

The GRBF network of Fig. 2 can be converted into a linear associator by omitting
the middle layer (the basis units; the full GRBF scheme has a linear part connected in
parallel with the network of Fig. 2 at all times'?). The association function in this case
is realized by the matrix C. Let V be the matrix whose rows are the training views
and Y the matrix whose rows are the vectors to be associated with the rows of V (in
our case, all of these are the same vector, e.g. the first training view). C is then found
by solving the equation Y = CV, that is, C = YV™ (pseudoinverse is needed, since
generally V is not square).

The performance of the linear associative memory (Fig. 16) was considerably
worse than that of the GRBF module. The main difference is in the MIN/MAX
measure, which failed to exceed 1.0 even with 100 training views. A closer look
revealed that this was due to the tendency of the linear associator to overgeneralize.

3.7.2. Nearest neighbor scheme

Another recognition scheme that we tested, the nearest neighbor (NN) classifier,
operated as follows. In training, it stored all the views of the target object presented to
it. To decide whether a new view belonged to the target object, the NN classifier
found among the stored views the one with the shortest Euclidean distance from the
input view. This distance, which could be interpreted as the inverse of a classification
confidence measure, was then returned as the classification error. This simple
recognition scheme performed surprisingly well, with the MIN/MAX measure exceed-
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Fig. 16. AVG/AVG and MIN/MAX indices vs. the number of training views for the linear associative
scheme (six-vertex random wire objects).

ing 1.0 with just 100 views (Fig. 17). As the number of stored views grows, the
performance of the NN classifier is expected to improve, asymptotically matching that
of the RBF scheme. Any comparison between the two schemes should include,
therefore, the amount of memory they use.

3.7.3. Nearest neighbor without correspondence

The computation of the Euclidean distance between the input and each of the stored
views in the NN scheme requires that the correspondence between the features of the
objects be known. This requirement can be dispensed with, at the cost of reduced
performance, as follows. Define recognition error for a given object as the inverse of
the sum of 2-D correlations between each of the stored training views (represented in
this case as 2-D arrays rather than as 1-D vectors of vertex coordinates) and the input
view. Low error would then be obtained for an input that is “‘close’’ to at least one of
the stored views. To improve the generalization ability of the NN classifier that relies
on 2-D correlation, the input view is blurred (convolved with a Gaussian mask) before
the correlations are computed. The dependence of the performance on the size of the
blurring mask is shown in Fig. 18.
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AVG / AVG

MN /MAX

Fig. 17. AVG/AVG and MIN/MAX indices vs. the number of remembered wires for the nearest-neighbor
method that uses correspondence information (six-vertex random wire objects). For comparison purposes,
the performance of the RBF scheme with M = K is also shown (dashed curve).

AVG / AVG
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sigma
Fig. 18. AVG/AVG and MIN/MAX indices vs. the width o of the Gaussian blurring mask (see
Sec. 3.7.3) for the nearest-neighbor method that uses 2-D correlation and 2-D array representation of views,

instead of correspondence information and 1-D vector representation of views (six-vertex random wire
objects; the number of remembered views is 80).
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4. DISCUSSION

The reconstructionist dogma of computational vision appears recently to have fallen
upon hard times. A standard version of this dogma holds that the ultimate goal of a
visual recognition system is the formation of object representations that make explicit
the relevant 3-D structure, just as a toy airplane makes explicit the relative size and
position of the wings and the fuselage in the real airplane. This view of recognition
considers the 2-D image bottleneck that necessarily intervenes between the distal
object and its percept as a nuisance to be overcome, e.g. by invoking relevant physical
and computational constraints.' Due to persistent difficulties at the higher levels of the
reconstructionist program (see Ref. 23 for a review), inverse optics all the way to the
top no longer seems to be the most promising approach to recognition.®

The performance of the GRBF module described in the foregoing sections suggests
that object recognition can be done without first reconstructing the third dimension of
the visual input, and without relying on three-dimensional object models (see also
Refs. 22, 24). Moreover, adopting the present approach to recognition does not mean
giving up the use of information beyond 2-D shape, such as color, texture and depth,
which can be incorporated naturally into the GRBF module (see Sec. 3.2). Computa-
tionally, therefore, there seems to be no reason to reject the memory-based function
approximation approach to recognition out of hand.

In the study of biological vision, the notion that in the primate visual system objects
are represented by single units each of which responds selectively to a specific object,
dubbed the grandmother cell dogma, used to draw criticism, for a number of reasons.
The arguments given against it included the limited memory capacity of the brain and
the lack of neurobiological and psychological support. The results reported in the
previous sections indicate that doing function approximation rather than straightforward
template matching may solve the memory capacity problem. Furthermore, the function
approximation approach is also compatible with prominent biological and psychophy-
sical findings on recognition outlined below.

4.1. Biological Aspects

4.1.1. Receptive fields

One feature of the GRBF scheme that may guide its biological interpretation is the
expressibility of its function in terms of combinations of receptive fields. It is possible
to decompose a multidimensional Gaussian radial basis function into a product of
Gaussians of lower dimensions (Fig. 2(b)). In our case, the center of a basis unit plays
a role similar to a prototype and the unit’s response profile is synthesized as the
product of feature detectors with two-dimensional Gaussian receptive fields (i.e. the
activity of a detector depends on the distance r between the stimulus and the center of

¢ Inverse methods appear to be useful in low-level visual tasks such as stereo and motion computation
which contribute to the representation that Marr called 24 D-sketch.'® At the higher levels, the lack of
well-defined constraints on the solution that are general enough to be relevant in real-life situations hinders
the application of inverse methods.
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the receptive field as e/ "Z). The network’s output (see Eq. 1) is the sum of these
products and therefore represents the logical disjunction of conjunctions ““V,/\;
(feature F; at (x;, y;))’’, where the disjunction ranges over all the prototypes of the
given object.

4.1.2. View-specific units

Cells that respond preferentially not only to a specific object, but to a limited range
of that object’s views, have been found in the inferotemporal cortex of monkeys by a
number of researchers (see Ref. 25 for a review). The existence of these ‘‘grand-
mother cells”” is compatible with the notion of a hierarchical structure of object
representations. The lower level of this structure may be composed of receptive fields
that transduce position of individual features into activity of units that encode their
presence. The next level would correspond to *‘grandmother’™ units that encode
specific views. In the GRBF terminology, these are the basis units, each centered
around the view it is tuned to. At a still higher level, a ‘‘disembodied’’ representation
of an object could be formed by combining several view-specific units, arriving at the
disjunction of conjunctions representation that stands for the object, irrespective of
viewpoint (or position, or size)."

4.1.3. Separating ‘‘what’’ from ‘‘where”’

Rather than discarding the viewpoint information in the process of arriving at the
viewpoint-invariant representation, the GRBF scheme can retrieve and output it
separately (see Fig. 1 and Sec. 3.6.4). As a final parallel between GRBFs and visual
neuroscience, we note that this separation of form and space resembles the separation
between the ventral and the dorsal visual pathways, the first of which carries
predominantly shape and the second—predominantly spatial information from the
striate cortex towards temporal and parietal regions, respectively (see e.g. Ref. 26).

4.2. Psychophysical Aspects

Another aspect of the biological plausibility of our approach to recognition 1s
provided by psychological studies. Although the GRBF-based recognition system can
hardly be considered a complete model of human object recognition, some of its
functional characteristics parallel those of human performance. In particular, recogni-
tion by the recovery of a fixed standard view of the input object may be considered
analogous to the phenomenon of object constancy.?’ Furthermore, as an interpolation
scheme, a GRBF module necessarily performs better on some of the views of the
object it has been trained upon (specifically, on the views corresponding to the centers
of the basis functions) than on other, random views. This characteristic resembles the
phenomenon of canonical views.?® Finally, a model mathematically related to GRBFs

" Marr (Ref. 1, p. 15) argued that little understanding of how vision is done is gained by invoking the
grandmother cell hypothesis if it is based only on neurophysiological data. Our approach complements the
neurophysiological hypothesis by providing one possible computational account of the hierarchical structure
of object representations, from feature detectors, through view-specific encoding, to grandmother cells.
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has been shown to replicate central features of the time course of object recognition,
including effects of unsupervised learning (practice).**

Assuming that a scheme resembling GRBF or some other kind of prototype
interpolation is the basis of the human ability to recognize objects allows one to
formulate strong predictions regarding human performance in specific experiments.
The most important of these predictions states that when viewpoint-sensitive features
(such as wire-frame vertex locations) are predominant in the input, the ability of the
visual system to generalize recognition to a novel view of an object should drop off
significantly with the misorientation of the novel view relative to the familiar views of
that object. Thus, experimental evidence of such dependency®~’
prototype interpolation approach that is central to the GRBF model.

supports the

5. SUMMARY

We have described experiments with a versatile pictorial prototype-based learning
scheme for 3-D object recognition. The GRBF scheme seems to be amenable to
realization in biophysical hardware because the only kind of computation it involves
can be effectively carried out by combining receptive fields. Furthermore, the scheme
is computationally imposing because it brings together the old notion of a ‘‘grand-
mother’” cell and the rigorous approximation methods of regularization and splines.
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