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Progress in the understanding of visual recognition in the past year has
been signified by the demonstration of computational feasibility of and
psychophysical support for two-dimensional view-interpolation methods.
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Introduction

Much of the visual activity of a mobile intelligent be-
ing endowed with sight may be classified as recognition.
Loosely speaking, such diverse uses of vision as the iden-
tification of prey or predator, navigation, and non-verbal
social function all require that the visual system be ca-
pable of object recognition. Thus recognition is a rather
broad topic to which it would be difficult to do justice
within the limitations of a short review.

The present discussion is therefore largely confined to
model-based subordinate-level [1] recognition of iso-
lated objects. It will not deal with the different problem of
categorization, that is recognizing a chair as such, even if
that particular chair has never been seen before. Model-
based recognition means that information derived from
the image of an object to be recognized is compared with
a set of internal models that represent objects known to
the system. This definition stresses the issue of internal
representation, that is common to vision and other cog-
nitive faculties [2]. As we shall see, representation has in-
deed been the central issue in the recent developments
in the field of recognition. In particular, the nature of rep-
resentation in human vision appears to differ enough in
subordinate-level, as compared with basic-level, recogni-
tion to warrant a separate treatment of the two cases.

Recognition in computer vision

To succeed in recognition, a system (natural or artificial)
must cope with two major sources of variability in object
appearance. The first problem is the variability due to dif-
fering light conditions. Proposed solutions to this prob-
lem in computer vision (e.g. the use of intensity and other
discontinuities as a base representation [3]), as well as
accounts of human recognition performance under vary-
ing light conditions, are outside the scope of this article.
The second major problem in recognition — changes
in object appearance due to a potentially infinite variety

of positions relative to the viewer — has in recent years
been found to have a satisfactory solution.

Recall that model-based recognition calls for a compari-
son between the input and the set of internal represen-
tations (models). Because of viewpoint dependency of
object appearance, such a comparison cannot be made
unless the transformation associated with the particu-
lar viewpoint is compensated for. Surprisingly, it tumns
out that one need not know the identity of the object
to compensate for the viewpoint transformation. Specifi-
cally, one can match a small number of key features be-
tween the image and a model, compute and carry out
the transformation implied by their correspondence, and
verify the match by assessing the similarity between the
two representations. If the input image indeed belongs to
that particular model, similarity will be high, and the im-
age may be considered recognized. In principle, this pro-
cess, referred to as recognition by alignment [4], must
be carried out (possibly in parallel) for all known object
models.

Although alignment and related approaches [4-6,7+°]
have proved successful in the recognition of a variety of
object classes under realistic conditions, they all share the
significant limitation of a dependence on externally sup-
plied three-dimensional representations of known ob-
jects, without which viewpoint transformations cannot be
properly compensated for. This handicap affects the suit-
ability of approaches based on three-dimensional repre-
sentations both for machine vision and for the modeling
of recognition in human vision, as true three-dimensional
reconstruction of the world is computationally difficult
and is probably not implemented fully in the human vi-
sual system (for a review, see [8]).

Model-based recognition without
three-dimensional models

The past year has seen developments in the theory of
object recognition that have effectively disposed with the
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Fig. 1. (@) A schematic illustration of the object recognition mod-
ule implemented as a Hyper basis function (HyperBF) network
which is capable of recognizing three-dimensional objects from
two-dimensional views. Each basis unit in the middle layer com-
putes the distance of the input view from a fixed standard view,
which is represented by the centre of the basis unit, and applies
to it the weighted distance function. The resulting value can be
regarded as the activity of the unit. A basis unit attains maxi-
mum activity when the input view exactly matches the proto-
typical view. The output of the module is a linear superposition
of the activities of all the basis units in the network; x,y, are
the components of the vector (t) associated with a two-dimen-
sional view of the object, X', y', represent the output ‘standard
view’. T, summation. (b) Shows an equivalent interpretation of
() for the case of Gaussian basis functions. A multidimensional
Gaussian can be synthesized as the product (II) of two-dimen-
sional Gaussian receptive fields operating on retinotopic maps
of features. The solid circles in the image plane represent the
two-dimensional Gaussians associated with the first radial basis
function (RBF), which corresponds to the first view of the object.
The broken circles represent the two-dimensional receptive fields
that synthesize the Gaussian radial function associated with an-
other view. The receptive fields transduce positions of features,
represented implicitly as activity in a retinotopic array, and their
product computes the basis function without the need of calcu-
lating norms and exponentials explicitly.

need for three-dimensional representations. In one such
development, Ullman and Basri [9*] have shown that
under orthographic projection any view of a three-dimen-
sional object can be represented (up to a multiplicative
factor) in a point-by-point fashion as a linear combina-
tion of at most six fixed views of the same objects. Fur-
thermore, it has been shown that a few views of an ob-

ject are sufficient to synthesize a linear operator for the
recognition of that object from a single two-dimensional
image.

Another recently developed method [10°¢], similarly ca-
pable of learning’to recognize three-dimensional objects
from two-dimensional views, is based on the observa-
tion that the problem of recognition can be formulated
in terms of approximation of a smooth mapping (e.g.
the mapping from any viewpoint of an object to a fixed
‘standard’ view). This method uses an extension of the
results from the function approximation theory, namely,
approximation with Hyper basis functions (or HyperBFs)
[11,12], and can be implemented as a network (see Fig.
1) [13] that learns to recognize three-dimensional ob-
jects given a sample set of their two-dimensional views.
This approach is compatible with perspective projection
and in addition can use a variety of representational prim-
itives to image coordinates of object features. The perfor-
mance of the HyperBF network on both synthetic and
real images of three-dimensional objects is encouraging
(13].

Experimental evidence in favor of the
view-interpolation theory of recognition

It is now becoming increasingly clear that the HyperBF
network is a viable model of at least one pathway to
object recognition in human vision. Psychophysical ev-
idence to that effect is provided by two different classes
of data. The classes correspond to the two major phe-
nomena in the psychology of subordinate-level recogni-
tion: first, the existence of canonical views [14] and their
development with practice (notably, the disappearance
of orderly dependence of recognition time on misorien-
tation relative to a canonical view) [15,16]; and second,
limited generalization to novel views, even in the pres-
ence of full three-dimensional information on the struc-
ture of the stimulus [17,18%].

Support of a different kind for the notion of viewpoint-
specific representation has been provided by simulated
‘psychophysical’ experiments, in which computer imple-
mentations of the HyperBF and a related model [19],
have been presented with the same computer-generated
stimuli seen by the human subjects. In these experiments,
the models replicated key characteristics of human per-
formance mentioned above (for a review, see [18°¢]).

Yet another source of support for the idea that objects
are represented in the brain by sets of predominantly
two-dimensional views can be found in single-cell record-
ings from the inferotemporal cortex (the target area of
the major shape-processing stream in the brain [20]) in
the monkey [21,22]. The discovery in that area of cells
that respond preferentially to specific aspects (see [23])
of human faces has long been quoted by the proponents
of the ‘grandmother cell’ doctrine [24] in support of their
theory. This view seems to have gained plausibility re-
cently following consistent replication of ‘face cell’ find-
ings (for a review, see [25]), the emergence of evidence
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that face cells ‘learn’ by modifying their response profile
with experience [26], and the demonstration of the role
of single cells in mediating perceptual behavior [27]. On
the theoretical side, this is paralleled by the development
of view-interpolation models, which can be interpreted as
a computational rationale for the grandmother cell theory
[10°e,13].

Modeling the variety of recognition

Viewpoint-dependent performance is exhibited by just
one of the many pathways to recognition apparently ac-
tive within the human visual system. The development
of a comprehensive model of recognition that would
offer a unified account of all psychophysical data de-
pends on a better understanding of these pathways and
their interactions. Apart from the general observation that
basic-level but not subordinate-level recognition tends to
be viewpoint-invariant [28], not much is known about
the details of the conditions under which different path-
ways are dominant (a similar situation is found in the
study of another visual system that excels in recognition,
that of the pigeon [29,30]). One relevant result states
that viewpoint-dependent recognition prevails when the
objects differ along more than one spatial dimension
[31¢¢]. Other characterizations of viewpoint dependence
of recognition are related to details of object presenta-
tion [32]. Finally, basic-level recognition of line drawings
of common objects seems to be consistently invariant to
viewpoint, as well as to translation and reflection [33,34].
A somewhat involved model of this aspect of recognition
is described by Hummel and Biederman [35]. It should
be noted that this model, based on a theory known as
recognition by components (see [36]), glosses over im-
portant issues in low-level vision and has not yet been
applied to the real-world stimuli.

Perspectives

The operation of the viewpoint-dependent pathway to
recognition is currently the subject of intensive research.
In particular, the generalization capability of this pathway,
to transformations other than rotation, has recently been
investigated. It was found that the factor most closely cor-
related with recognition error rate was the amount of
two-dimensional (image) shape change, even when the
stimulus was transformed non-rigidly (i.e. when it was
deformed), as predicted by the HyperBF model of recog-
nition [37]. As to the dependence of recognition on the
position of the stimulus within the visual field, the find-
ings range from very limited invariance for dot patterns
[38] to translationally-invariant but viewpoint-dependent
performance for pictures of real objects [32]. More re-
search is clearly required to characterize the phenomena
of position and size [39] invariance in recognition.

One possible approach to a computational understand-
ing of these phenomena is through the integration of

existing models of shape processing in early vision
[40,41] with the HyperBF techniques mentioned above.
Any attempt at such synthesis would have to address
what seems to be the major remaining problem in
subordinate-level recognition, namely, phenomenologi-
cal and computational characterization of the basic fea-
tures that are the primitives of form representation.
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