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Abstract--Template matching by means of cross-correlation is common practice in pattern recognition in spite 
of its drawbacks. This paper reviews some results on how these shortcomings can be removed. Several 
techniques (Matched Spatial Filters, Synthetic Discriminant Functions, Principal Components Projections and 
Reconstruction Residuals) are reviewed and compared on a common task: locating eyes in a database of faces. 
New variants are also proposed and compared: least squares Discriminant Functions and the combined use of 
projections on eigenfunctions and the corresponding reconstruction residuals. Finally, approximation networks 
are introduced in an attempt to improve filter design by the introduction of nonlinearity. © 1997 Pattern 
Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

The detection and recognition of objects from their 
images, irrespective of their orientation, scale, and view, 
is a very important research subject in computer vision, if 
not computer vision itself. Several techniques have been 
proposed in the past to solve this challenging problem. In 
this paper we will focus on a subset of these techniques, 
those employing the idea of projection to match image 
patterns. The notion of Matched Spatial Filter (MSF) is a 
venerable one with a long history. °)  While by itself it 
cannot account for invariant recognition, it can be 
coupled to invariant mappings or signal expansions, 
and is therefore able to provide invariance to rotation 
and scaling in the image plane. In order to cope with more 
general variations of the object's views more sophisti- 
cated approaches have to be employed. Among them, the 
use of Synthetic Discriminant Functions ~2-~4) is one of 
the more promising so far developed. In these paper we 
will follow a path from MSF, to expansion matching 
through different variant of SDFs. Section 2 describes 
the basic properties of MSF, their optimality and their 
relation to the probability of misclassification. The gen- 
eralization of MSF to a linear combination of example 
images is introduced next. Several shortcomings of the 
basic approach are outlined and a set of possible solutions 
is presented in the subsequent section. We discuss a 
relation of the resulting class of filters to nonorthogonal 
image expansion. A generalization to projections on 
multiple directions and the use of the projection residual 
for pattern matching is then investigated. °5-2°) Finally, a 
more powerful, nonlinear framework is introduced in 
which template matching can be looked at as a problem 
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of function approximation. Network architectures and 
training strategies are proposed within this new general 
framework. 

2. MATCHED SPATIAL FILTER 

Template matching is extensively used in low-level 
vision tasks to localize and identify patterns in images. 
Two methods are commonly used: 

1. Image subtraction: images are considered as vectors 
and the norm of their difference is considered as a 
measure of dissimilarity; 

2. Correlation: the dot product of two images is con- 
sidered as a measure of their similarity (it represents 
the angle between the images when they are suitably 
normalized and considered as vectors). 

When the images are normalized to have zero average 
and unit norm, the two approaches give the same result. 
The usual implementation of the above methods relies on 
the Euclidean distance. Other distances can be used and 
some of them have better properties such as increased 
robustness to noise and minor deformationsJ 2~) The next 
sections are mainly concerned with the correlation ap- 
proach. The idea of image subtraction is introduced again 
in the more general nonlinear framework. 

2.1. Optimality 

One of the reasons for which template matching by 
correlation is commonly used is that correlation can be 
shown to be the optimal (according to a particular 
criterion) linear operation by which a deterministic signal 
corrupted by additive white Gaussian noise can be 
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detected31) Let the signal be 

g(x) = (~(x) + A(x), (1) 

where 0(x) is the original, uncorrupted, signal and A(x) is 
noise with power spectrum S(co). The noise is assumed to 
be wide-sense stationary with zero average so that 

e{;~(x)} = 0, e{;~(x + ,,);~(x)} = R(a). 

We assume that 0(x) is known and we want to establish 
its presence and location. To do so we apply to the 
process g(x) a linear filter with impulse response h(x) 
and system function H(co). The resulting output is 

z(x) = g(x) * h(x) = f g(x - a)h(a) do (2) 

o c  

= z~(x) + z~(x). (3) 

Using the convolution theorem for the Fourier transform 
we have that 

zo(x) : 7 0 ( x  - a)h(a) do 
- -  , o c  

= 2 ~ f  • (co)H (~o)exp[iwx] dco. 

- - o c  

We want to find H(~o) so as to maximize the following 
signal to noise ratio (SNR): 

r 2 -  IZ¢(X°)[2 (4) 
E{z~(x0)}' 

where Xo is the location of the signal. The SNR represents 
the ratio of the filter responses at the uncorrupted signal 
and at the noise. It is defined at the true location of the 
signal (usually the correlation peak) therefore not taking 
into account the off-peak response of the filter. 

Two cases of particular interest are those of white and 
colored noise: 

White Noise: This type of noise is defined by the 
following condition: 

S(~o) = S0, 

which corresponds to a flat energy spectrum. The 
Schwartz inequality states that 

f f(x)g(x) <_ [f(x)l 2 Ig(x)l 2 
a a a 

and the equality holds iff f ( x ) =  k~,(x) (we use - to 
represent complex conjugation). This implies the follow- 
ing bound for the signal to noise ratio r: 

r2 _< f ]~(co) exp[i~oxol[ 2 dw f IH(w)l 2 dw 

27rSo f [H(w)I 2 dco 

and then 

rZ < E2_ ~ 
- -  S o '  

where 

1 f 
g~ = ~ J I~b(w)l 2 d~ 

represents the energy of the signal. From the Schwartz 
inequality the equality holds only if 

H(co) = k/~(co) exp[-i~ox0]. 

The spatial domain version of the filter is simply the 
mirror image of the signal: 

h(x) = kO(xo - x) 

which implies that the convolution of the signal with the 
filter can be expressed as the cross-correlation with the 
signal (hence the name Matched Spatial Filter). 

Colored Noise: If the noise has a nonflat spectrum S(co) 
it is said to be colored. In this case the following holds: 

2rrz0(x0) = f ~(aJ)H(w) exp[icox] dw, 

< - . s  [ IO(W)S(u;)exp[i~x] 12 dw 

× [ s(.~)lu(~)l 2 d~, 
J 

hence 

1 f I~(co)exp[icox]l 2 
r2 <-- ~ S(~) d~ 

with equality holding only when 

~ H ( ~ )  = k ~ exp[-i~ox0] 

The main consequence of the color of noise is that the 
optimal filter corresponds to a modified version of the 
signal 

k ~ exp[-iwx0] 
n(~)  -- s(~) ' 

which emphasizes the frequencies where the energy of 
the noise is smaller. The optimal filter can also be 
considered as a cascade of a whitening filter S-1/2(co) 
and the usual filter based on the transformed signal. 

In the spatial domain, correlation amounts to project- 
ing the signal g(x) onto the available template O(x). If the 
norm of the projected signal is not equal to that of the 
template, the value of the projection can be meaningless 
as the projection value can be large without implying that 
the two vectors are close in any reasonable sense. The 
solution is to compute the projection using normalized 
vectors. In particular, if versors are used, computing the 
projection amounts to computing the cosine of the angle 
formed by the two vectors, which is an effective measure 
of similarity. In vision tasks, vector normalization corre- 
sponds to adjusting the intensity scale so that the corre- 
sponding distribution has a given variance. Another 
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useful normalization is to set the average value of the 
vector coordinates to zero. This operation corresponds to 
setting the average of the intensity distribution for 
images. These normalizations are particularly useful 
when modern cameras are used, as they usually operate 
with automatic gain level (acting on the scale of the 
intensity) and black level adjustment (acting as an offset 
on the intensity distribution). 

2.2. Distorted templates 

The previous analysis was focused on the detection of 
a deterministic signal corrupted by noise. An interesting 
extension is the detection of a signal belonging to a given 
distribution of signals. (2) As an example, consider the 
problem of locating the eyes in a face image. We do not 
know who's face it is so that we cannot select the 
corresponding signal (the eyes of that person). A whole 
set of different eyes could be available, possibly includ- 
ing the correct ones. 

Let {~b(x)} denote the class of signals to be detected. 
We want to find the filter h which maximizes the SNR r 2 
over the class of signals { O(x) }. The input signal ~b(x) can 
be modeled as a sample realization of the stochastic 
process { q~(x)}. The ensemble-average correlation func- 
tion of the stochastic process is defined by 

roc~(x,y ) = Ee,{~(x)~(y)} (5) 

and represents the average over the ensemble of signals 
(and not over the coordinates of a signal). What we want 
to maximize is the ensemble average of the signal to 
noise ratio: 

E~{r 2} E{lzo(x°)12} -- ~ .  (6) 

Assume, without loss of generality, that x0=0. The 
average SNR can then be rewritten as 

E6{r2} = f fh ( -x )h( -y)K~o(x ,y )dxdy  (7) 
f f h(-x)h(-y)Ka~ (x, y) dx dy' 

where the ensemble autocorrelation function of the signal 
and noise have been used. The autocorrelation function 
of the white noise is proportional to a Dirac delta func- 
tion: 

Kaa(x,y) = N6(x - y) (8) 

so that the average signal to noise ratio can be rewritten as 

E~{r2} = f f h(-x)h(-y)K~¢(x,y) dxdy 
N f h(_x)2 dx (9) 

Pre-whitening operators can be applied as preprocessing 
functions when the assumption of white noise does not 
hold. The denominator of the RHS in equation (9) re- 
presents the energy of the filter and we can require it to be 
1: 

f h(-x)2dx = (10) 1. 

To optimize equation (9) we must maximize the numera- 
tor subject to the energy constraint of the filter. The 

ensemble autocorrelation function can be expressed in 
terms of the orthonormal eigenfunctions of the integral 

kernel Ke)~(x, y) 

K~o(x,y) = Z .~iOi(x)@i(Y), (1 l)  
i 

where the Ai are the corresponding eigenvalues. The filter 
function h can also be expanded in the same basis 

h(-x) = Z Cdi~Ji(X)" (12) 
i 

Using the inner product notation and the orthonormality 
of the ~i(x) we can state the optimization problem as 
finding 

arg max  ~-~)~i(h.~i) 2. (13) 
~,4:1 "-7" 

If we order the eigenvalues so that/~1 >_A2>.. ">_Ak2" ", 
we have 

N . E~{r 2} = ~ Ai(h " ~i) 2 
i 

= ~ .~ iw~ < )q Z a;~= A, (14) 
i i 

and the maximum value is achieved when the filter 
function is taken to be the dominant eigenvector. 

2.3. Signal to noise ratio and classification error 

Several performance metrics are available for correla- 
tion filters that describe attributes of the correlation 
plane. The signal to noise ratio (SNR) is just one of 
them. Other useful quantities are the peak-to-correlation 
energy, the location of the correlation peak and the 
invariance to distortion. As correlation is typically used 
to locate and discriminate objects, another important 
measure of a filter's performance is how well it discri- 
minates between different classes of objects. The sim- 
plest case is given by the discrimination between the 
signal and the noise. In this section we will s h o w  (14'22) 

that for the classical matched filter maximizing the SNR 
is equivalent to minimizing the probability of classifica- 
tion error Pe when the underlying probability distribution 
functions (PDFs) are Gaussians. 

The classifier which minimizes the probability of error 
is the Bayes classifier. If we consider two normal dis- 
tributions A and B, according to the Bayes decision rule, 
the observed vector x E A if 

(X - mA)'r~Al (X -- mA) -- (X -- ms) ' r~ l  (x -- mB) 

1-[EAI PA (15) + n ~ - ~  < 21n p~ 

and x E B otherwise, where mA, me are the distribution 
means, Za, EB the covariance matrices and PA, PB the 
occurrence probabilities. 

Let us consider two classes: a deterministic signal 
corrupted with white Gaussian noise as class A and 
the noise itself as class B. In this case mA = q~, 
me = 0 and ~A = ~B = I. This means that the compo- 
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Fig. 1. The probability of error, represented by the shaded area, 
when the distributions are Gaussian with the same covafiance. 

nents of the signal are uncorrelated and have unit var- 
iance. If we further assume that the a priori probabilities 
of occurrence of these classes are equal, the probability 
of error (see also Fig. 1) is given by 

? exp( -u2/2)du ,  (16) 
1 

Pe--v~ 
r/ 

where ~? = ½ (1/2, with ( being the Mahalanobis distance 
between the PDFs of the two classes: 

: (raA -- mB)Tl(raA -- m/~) = ~bTq5 (17) 

and the Bayes decision rule simplifies to 

x E A if ~bTx > ~ ,  (18) 

1 
x C B if ~Tx < ~ .  (19) 

The input vector x is then classified as signal or noise 
depending on the value of the correlation with the un- 
corrupted signal. We have already shown that correlation 
with the signal maximizes the signal to noise ratio, so 

when the noise distribution is Gaussian maximizing the 
SNR is equivalent to minimizing the classification error 
probability. When the noise is not white, the signal can be 
transformed by applying a whitening transformation A: 

ATEA = I (20) 

and the previous reasoning can be applied. 

3. S Y N T H E T I C  D I S C R I M I N A N T  F U N C T I O N S  

While correlators are optimal for the recognition of 
patterns in the presence of white noise they have three 
major limitations: the output of the correlation peak 
degrades rapidly with geometric image distortions, the 
peak is often broad (see Fig. 2), making its detection 
difficult, and they cannot be used for multiclass pattern 
recognition. It has been noted that one can obtain better 
performance from a multiple correlator (i.e. one comput- 
ing the correlation with several templates) by forming a 
linear combination of the resulting outputs instead of, for 
example, taking the maximum value. (23"24) The filter 
synthesis technique known as Synthetic Discriminant 
Functions (SDF) starts from this observation and builds 
a filter as a linear combination of MSFs for different 
patterns. (3'4) The coefficients of the linear combination 
are chosen to satisfy a set of constraints on the filter 
output, requiring a given value for each of the patterns 
used in the filter synthesis. By forcing the filter output to 
different values for different patterns, multiclass pattern 
recognition can be achieved. Let { 0i (x) }i 1 ...... be a set of 
(linearly independent) images and u = {u j , . . . ,  un} T be 
a vector representing the required output of the filter for 
each of the images: 

~i @ h = ui (21) 

where ® represents correlation (not convolution). The 
filter h can be expressed as a linear combination of the 
images ~hi: 

h(x) = E biOi(x) (22) 
i=l, . . . ,n 

10 0 

N.I . 
X 0.0 

Fig. 2. The cross-correlation of the template reported on the right. Note the diffuse shape of the peak that 
makes its localization difficult. 
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as any additional contribution from the space ortho- 
gonal to the images would yield a zero contribution 
when correlating with the image set. If we denote by 
X the matrix whose columns represent the images (re- 
presented as vectors by concatenating their rows), by 
enforcing the constraints we obtain the following set of 
equations: 

b = ( x T x )  lu, (23) 

which can be solved as the images are linearly indepen- 
dent. The resulting filter is appropriate for pattern re- 
cognition applications in which the input object can be a 
member of several classes and different distorted ver- 
sions of the same object (or different objects) can be 
expected within each class. If M is the number of classes, 
ng the number of different pattern within each class i, N 
the overall number of patterns, M filters can be built by 
solving 

bi = (xTx) - Ig i ,  i = I , . . . , M ,  (24) 

where 

{ ~  i-I 
~ik : ~-~j::l /'/J < k < ~ j : l  I/j, (25) 

otherwise, 

k = 1 , . . . ,  N and image Ck belongs to class i if ~Sik = 1. 
Discrimination of different classes can be obtained also 
using a single filter and imposing different output values. 
However the performance of such a filter is expected to 
be inferior to that of a set of class specific filters due to 
the high number of  constraints imposed on the filter 
outputs. (3) While this approach makes it easy to obtain 
predefined values on a given set of patterns it does not 
allow to control the off-peak filter response. This can 
prevent reliable classification when the number of con- 
straints becomes large. 

The effect of filter clutter can also appear in the 
construction of a filter giving a fixed response over a 
set of images belonging to the same class (the Equal 
Correlation Filter introduced in reference (3)). 

In order to minimize this problem we propose a new 
variant of SDFs: least squares SDFs. These filters are 
computed using only a subset of the training images 1 and 
the coefficient of the linear combination is chosen to 
minimize the square error of the filter output on all of the 
available images. In this case the matrix R = x T x  is 
rectangular and the estimate of the b relies on the 
computation of the pseudoinverse of R: 

R t = (RTR) IRT. (26) 

The dimension of the matrix to be inverted is n × n, where 
n represents the number of images used to build the filter 
and not the (greater) number of training images. By using 
a reduced number of building templates the problem of 

~The subset of training images can be chosen in a variety of 
ways. In the reported experiments they were chosen at random. 
Another possibility is that of clustering the available images, 
the number of clusters being equal to the number of images 
used in filter synthesis. 

filter cluttering is reduced. A different use of least square 
estimation for filter synthesis can be found in reference 
(4) where it is coupled to Karhunen-Loeve expansion for 
the construction of correlation SDFs. 

The results for a sample application are reported in 
Fig. 3. Note that by using a least square estimate a good 
performance can be achieved using a small number of 
templates. This has a major influence on the appearance 
of the resulting MSF as can he seen in Fig. 4. 

Another variant is to use symbolic encoded filters. (3~ In 
this case a set of k filters is built whose outputs are 0 or 1 
and can be used to encode the different patterns using a 
binary code. In order to use the filter for classification, 
the outputs are thresholded and the resulting binary 
number is used to index the pattern class. 

Synthesis of the MSF from a projection SDF algo- 
rithm can achieve distortion invariance and retain 
shift invariance. However, the resulting filter cannot 
prevent large sidelobe levels from occurring in the 
correlation plane for the case of false (or true) targets. 
The next section will detail the construction of filters 
which guarantee controlled sharp peaks and good noise 
immunity. 

4. ADVANCED SDFs 

The signal to noise ratio maximized by the MSF is 
limited to the correlation peak: it does not take into 
account the off-peak response and the resulting filters 
often exhibit a sustained response welt apart from the 
location of the central peak. This effect is usually am- 
plified in the case of SDF when many constraints are 
imposed on the filter output. In order to locate the 
correlation peak reliably, it should be very localized. (5) 
However, it can be expected that the greater the localiza- 
tion of the filter response (approaching a ~ function) the 
more sensitive the filter to slight deviations from the 
patterns used in its synthesis. This suggests that the best 
response of the filter should not really be a function, but 
some shape, like a Gaussian, whose dispersion can be 
tuned to the characteristics of the pattern space. In this 
section we will review the synthesis of such filters in the 
frequency domain. (12) 

Let us assume for the moment that there is no noise. 
The correlation of the ith pattern with the filter h is 
represented by 

z i ( n ) - ~ i ( n ) ® h ( n ) ,  n = 0  . . . . .  d - l ,  (27) 

where d is the dimension of the patterns. In the following, 
capital letters are used to denote the Fourier transformed 
quantities. The filter is also required to produce an output 
ui for each training image: 

zi(O) = ui, (28) 

which can be rewritten in the Fourier domain as 

H+X = du, (29) 

where + denotes complex conjugate transpose. Using 
Parseval's theorem, the energy of the ith circulant cor- 
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Genera l i zed  Ma tched  Fi l ters 
1 . 0  . . . . . . .  , . . . . . . . . . . . . .  u SDF 

O. 9 z~ Average 

c 0 Maximum 

.o 0 .8  
"5 i i 

o 0 .7  ............................................................................................. 

t 

0.6 ..... ~ ~ ~  .......... -j[ .......... &---- 

. . . . . . . . . . . .  , , , , , , i , 

4 6 8 10 12 14 16 
Troining i m o g e s  

Fig. 3. An increasing portion of a set of 30 eyes images was used to build an SDF, an average MSF or a set 
of prototype MSFs from which the highest response was extracted. Our new least square SDF uses four 
building templates. The plot reports the average responses over a disjoint 30 image test set. Note that the 
lower values of MSFs are due to the fact that their response is not scaled to obtain a predefined value as 

opposed to SDFs whose output is constrained to be 1, and to approximate 1 for ls SDFs. 

i 

Fig. 4. The MSFs resulting from using 20 building images in the SDF (left) and 2 in the least square SDF 
(right) when using the same set of training images. The difference in contrast of the two images reflects the 

magnitude of the MSFs. The performance of the two filters was similar. 

relation plane is given by 

d-I l d l  
Ei = ~ Iz,(n)[ 2 = ~ ~ lZi(k)l 2 

n = 0  k = 0  

1 a-1 
= - ~_, In(k)12l~i(k)[ 2. (30) 

d k=0 

When the signal is perturbed with noise the output of the 
filter will also be corrupted: 

zi(O) = ~bi(0) ® h(0) + ,~(0) ® h(0). (31) 

Under the assumption of zero-mean noise, the variance of 
the filter output due to noise is 

1 d - I  
EN = ~l ~-" IH(k)IES(k)' (32) 

k = 0  

where S(k) is the noise spectral energy. What  we would 
like is a filter whose average correlation energy over the 

different training images and noise is as low as possible 
while meeting the constraints on the filter outputs. A first 
choice is to minimize 

E = ~_, (El + EN) (33) 
i 

1 
= ~l ~ ~ In(k)12([~'(k) 12 + S(k)) (34) 

i k 

subject to the constraints of equation (29). However, 
minimizing the average energy (or filter variance due 
to noise) does not minimize each term, corresponding to 
a particular correlation energy (or noise variance). A 
more stringent bound can be obtained by considering the 
spectral envelope of the different terms in equation (34): 

E = ~ IH(k)12max(l~l (k)12,. . . ,  I~N(k)I 2, S(k)). 
k 

(35) 
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If we introduce the diagonal matrix Tkk = 
N max(lqh (k)12,..., ]~s(k)[2, S(k)) the filter synthesis 
can be summarized as minimizing 

E = H + T H  (36) 

subject to 

H+ X = du. (37) 

This problem can be solved (7) using the technique of 
Lagrange multipliers to minimize the function: 

N 
= H + T H  - 2 ~ , ~ i ( n + x i  - dui), (38) 

i=1 

where A1, • • •, As are the parameters introduced to satisfy 
the constrained minimization. By zeroing the gradient of 

with respect to H we can express H as a function of T 
and of A =  {A1,...,AN}. By substitution into equa- 
tion (37), the following solution is found: 

H = T -1X(X+T I x ) - l u .  (39) 

The use of the spectral envelope has the effect of redu- 
cing the emphasis given by the filter to the high fre- 
quency content of the signal, thereby improving 
intraclass performance. It is important to note that the 

resulting filter can be seen as a cascade of a whitening 
filter T -1/2 and a conventional SDF based on the trans- 
formed data. Note that in this case the whitened spectrum 
is the envelope of the spectra of the real noise and of the 
training images. A least square approach may again be 
preferred to cope with a large number of examples. In this 
case all available images are used to estimate T but only a 
subset of them is used to build the corresponding SDE 

Experiments have been reported using a white noise of 
tunable energy to model the intraclass variability (12) 

E = ~ In(k)lZmax(l,~,(k)[2,.. . ,  I~,s(~)12,,~). (40) 
k 

Adding white noise limits the emphasis given to high 
frequencies, reducing the sharpness of the correlation 
peak and increasing the tolerance to small variations of 
the templates (see Figs 5 and 6). A comparison of 
different filters is reported in Fig. 7. The effect of non- 
linear processing emphasizing the high frequencies to 
obtain a sharp correlation peak is reported in Fig. 8. 

Another way of controlling the intraclass performance 
is that of modeling the correlation peak shape. (1°'13) As 
already mentioned, the shape of the correlation peak is 
expected to be important both for its detection and for the 
requirements imposed on the filter which can impair its 

~ ~  100 

.~ 100 

25 ~.t ~5.OJ°O 
- ~ ~ 0  .~ 

r 

Fig. 5. Using an increasing amount of added white noise the emphasis given to the high frequency is 
reduced and the resulting filter response approaches that of the standard MSE 
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Fig. 6. The output of the correlation with an SDF computed using the spectral envelope of 10 training 
images and different amounts of white noise (left: ~ -  1, middle ~=5) compared to the output of normalized 
cross-correlation using one of the images used to build the SDF but without any spectral enhancement. The 

darker the image the higher the corresponding value. 

Fig. 7. The output of the correlation with an SDF computed using the spectral envelope of 20 training 
images as whitening preprocessing. Left: the normal SDF (20 examples). Right: a least square SDF with 6 
templates (20 examples). The darker the image the higher the corresponding value. The least square SDF 

exhibits a sharper response using the same whitening filter. 

ability to correlate well with patterns even slightly dif- 
ferent from the ones used in the training. Let us denote 
with F(k) the required shape of the correlation peak. The 
shape of the peak can be constrained by minimizing the 
squared deviations of  its output from the required shape 
F: 

N d 

Es = ~_, ~ Ig(k)*~g(k) - F(k)[ 2, 
i=1 k = l  

(41) 

where, for instance, f ( x )  = exp(-xZ/2~r 2) is a Gaussian 
amplitude function. By switching to matrix notation, the 
resulting energy can be expressed as 

Es -- H+DH + F+F - H + A F  - F+A+H, (42) 

where A is a diagonal matrix whose elements are the sum 
of the components of ~i and D is a diagonal matrix whose 
elements are the sum of the squares the components of 
~i. The first term in the RHS of equation (42) corre- 
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I00 7 ! r ~ 

28 .c #°~°°  

~0.~" 

X 0.0 

Fig. 8. Nonlinear processing can be employed. The figure represents the result of preprocessing the image to 
extract the local image contrast (intensity value over the average value in a small neighborhood). This kind 

of preprocessing emphasizes high frequencies and results in a sharp correlation peak. 

sponds to the average correlation energy of the different 
patterns [see equation (30)]. We suggest the use of the 
spectral envelope T instead of D, employed in the 
original approach, thereby minimizing the following 
energy: 

E' s = H + T H  + F + F  - H + A F  - F+A+H > Es. (43) 

The minimization of Es subject to the constraints of 
equation (29) can be done again using the Lagrange 
multiplier and is found to be 

H = T - I x ( X + T - 1 X ) - I d u  
(44) 

+ T 1AF - T - t X ( X + T - 1 X ) - I X + T - I A F .  

These filters provide a controlled, sharp correlation peak 
subject to the constraints on the filter output, the required 
correlation peak shape and the reduced variance to the 
noise. In our experiments the Fourier domain was used to 
compute the whitening filters. They were then trans- 
formed to the spatial domain where a standard correlation 
was computed after their application. An approach using 
only computations in the space domain can be found in 
reference (8). 

5. NONORTHOGONAL IMAGE EXPANSION AND SDF 

In this section we review an alternative way of looking 
at the problem of obtaining sharp correlation peaks, 
namely the use of nonorthogonal image expansion. (25'26) 
Matching by expansion is based on expanding the signal 
with respect to basis functions (BFs) that are all trans- 
lated versions of the template. Such an expansion is 
feasible if the BFs are linearly independent and complete. 
It can be proven that self-similar BFs of compact support 
are independent and complete under very weak condi- 
tions. Suppose one wants to estimate the discrete d- 
dimensional signal g(x) by a linear combination of basis 
functions @(x): 

d 

g'(x) = Z ciOi(x)' (45) 
i=1 

where @ (x) now represents the ith circulated translation 
of ~b. The coefficients are estimated by minimizing the 
square error of the approximation I g - g'l 2. The approx- 
imation error is orthogonal to the basis functions so that 
the following system of equations must be solved: 

d 

Z ((~)1, Oj)Cj = (~, 01) 
j--I 

• " (46) 
d 

j=l 

If the set of basis functions is linearly independent the 
equations give a unique solution for the expansion coef- 
ficients. If we consider the advanced SDF for the case of 
no noise, single training image and working in the spatial 
domain, (s) we have that the corresponding filter can be 
expressed as 

h = ([q~iT[q~])-l~, (47) 

where the columns of matrix [.] are the circulated basis 
functions @. The output of the correlation is then given 
by 

[~]h = C  = [~T] lq~. (48) 

The solution of the system (46) can be expressed as: 

c = [q~T]-1 ~, (49) 

which is clearly the same. In the case of no noise the 
resulting expansion is c=(0 . . . . .  0,1,0 . . . . .  0) with a single 
1 at the location of the signal. The idea of expansion 
matching is also closely related to correlation SDFs ¢4) 
where multiple shifted templates were explicitly used to 
shape the correlation peak. Let us consider a set of 
templates obtained by shifting the original pattern (pos- 
sibly with circulation) on the regular grid defined by the 
image coordinates. We can require that the correlation 
value of the original pattern with its shifted versions be 1 
when there is no shift and 0 for every nonnull shift. This 
corresponds to a filter whose response is given by 
c=(0  . . . . .  0,1,0 . . . . .  0) as previously described. 
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6. OTHER PROJECTION APPROACHES 

The whole idea of projection Synthetic Discriminant 
Functions is to find a direction onto which the projections 
of the different signals have predefined values. A typical 
image with 256×256 pixels is projected, for recognition 
purposes, onto a single direction in this high dimensional 
space. Another approach is to project the signal to be 
recognized onto a linear subspace. (16-2°'27) Let us first 
assume that the patterns of each of the classes to be 
discriminated belongs to different linear subspaces. For 
each class it is then possible to determine an orthogonal 
transformation which diagonalizes the covariance ma- 
trix. The elements of the transformed basis are the 
eigenvectors of the covariance matrix and are called 
principal components. They can be sorted by decreasing 
contribution to the covariance matrix, as represented by 
the corresponding entry in the diagonal covariance ma- 
trix. (22) The number of vectors in the basis is equal to the 
minimum between the number of available class pattern 
and the dimensionality of the embedding space. Each 
pattern in the class can usually be described by using only 
the most important components. The resulting restricted 
basis spans a linear subspace in which the patterns of the 
represented class can be found. Each possible pattern ~h 
can be projected onto the set of principal components and 
can be described as the sum of its projection qSc, plus an 
orthogonal residual ~bR,: 

= ,PL, + ~R~ + (~i), (50) 

where i identifies the class and (4~i) is the corresponding 
centroid. A comparison with the usual technique of 
computing the distance from a single pattern (e.g. the 
centroid) is reported in Fig. 9. 

~" t~ L ~ i  

~> 

An important class of objects spanning a linear space is 
given by the orthographic projections of rigid sets of 
points when looked at from different positions. (28'z9) 
Different objects span different six-dimensional linear 
spaces. This can be used to recognize them, irrespective 
of their orientation in space, by computing the magnitude 
of the projection residual over the individual linear 
spaces (see Fig. 9). Under perspective projection, when 
viewing an object from a reasonable distance, we expect 
that a six-dimensional linear space can still provide a 
good approximation to the real manifold. Further ana- 
lysis of the recognition experiments reported in reference 
(30) has shown that an HyperBF network ~3 ~) with a single 
unit is in fact able to learn the approximating linear space 
from a set of example views of different objects. The 
experiments used paper clips characterized by six feature 
points in the image plane, resulting in 12-dimensional 
vectors after perspective projection. The ith clip was 
characterized by a one-unit HyperBF network: 

Ci(O) exp(-(O - ti)TwTwi(o --/i)), (51) 

where ~h is the 12-dimensional input to the network, ti is a 
sample view (a prototype) of the ith clip and W/XW/ 
represents a metric. The network is trained by modifying 
ti and WxiWi to obtain Ci(O) ~ 1 when ~ is a view of the 
ith clip and Ci(~) ~ 0 when it is not. The effects of the 
resulting metric W~W/on the computation of distances 
between different views of the clips can be seen in 
Fig. 10. The distance computed using the learned metric 
is effectively the size of the projection residual. The 
eigenvalues of W~W/(see Fig. 11) are compatible with a 
six-dimensional embedding of the pattern space. 

j "  
. /  

(a) (b) 

Fig. 9. Computing the distance from linear subspace (a) versus computing the distance from a single 
prototype (b). In drawing (a), vector (0) represents the average pattern and the horizontal line on which 0L 
lies represents the linear subspace. 0L is the projection of pattern 0 on the linear space and 0R is the 
projection residual. Drawing (b) shows two vectors 01 and 02 with the same distance from the average 

pattern A but different distances from the pattern space. 



Template matching: method spatial filters and beyond 761 

Fig. 10. The square of coordinates ij represents the average 
value of distances of views of the ith and jth clip (darker values 
represent smaller distances). Left: Euclidean distances of views 
of the different clips; right: distances computed using the 

learned metric WToWo 

If the linear subspace is the one spanned by the first k 
eigenvectors of the covariance matrix, the sum of the 
eigenvalues corresponding to the ignored components 
can be used as an estimate for ICRI when the pattern 
belongs to the given class. In particular it can be used to 
accept or reject the pattern according to a threshold on the 
size of the residual 

I¢,RI = < 5, (52) 

where 

6 = ,3 ~ A i (53) 
i>k 

and/3 >_ 1 is an heuristic factor taking into account how 
good an estimate ~-~.i>k Ai is of the residual error, In 
Fig. 12 we report the fraction of image pixels classified 
as right eye as a function of the threshold on the residual. 
The fact that the residual is small (compared to 6) does 
not imply that the pattern belongs to the given class. 
Thresholding on the residual error should then be sup- 
plemented by the use of classification techniques in each 
of the linear subspaces, taking into account the 
distributions of the patterns. If, for instance, the dis- 
tribution of the points in the linear subspace is Gaussian, 
the parameters of the distribution can be computed and 
the probability of a pattern with given coordinates 
estimated (see Fig. 13 where an example is reported). 
If we denote by xi the ith component of ~b the following 
relation holds if  the distribution in the feature space is 
Gaussian: 

o( I - [  exp[-x~ /(2Ai)], (54) 
i=1 

where n is the number of computable principal compo- 
nents (i.e. the minimum between the number of available 
patterns and the pattern dimensionality). The resulting 
map can be used in conjunction with the distance map 
(see Fig. 14) to establish i fa  pattern of the correct class is 
present (for a similar approach, using the distance from 
the centroid in the projection space (~8 2o)). Note that in 
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Fig. 11. Eigenvalues of the learned metric matrix wTw. Note that there is compatibility with the findings of 
Basri-UUman that under ortographic projection the rank of the metric is 6. 
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Fig. 12. The fraction of image pixels classified as right eye as a function of the threshold on the residual. 
The first 10 eigenvectors from a population of 60 images were used. The image used for the plot was of a 
person not in the database. The vertical line represents the threshold computed by summing the residual 

eigenvalues. The correct eye is the only selected region for d<l 1, the other eye being selected next. 
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Fig. 13. The distribution of the values of the 5th principal component computed from 60 eyes images. Note 
the clear unimodality of the distribution which suggests the effectiveness of using a quadratic classifier in the 

feature subspace. The other components present a similar distribution. 

this particular case the probability map is much more 
effective than the residual distance map. 

It could be that a class cannot be packed tightly 
into a linear subspace. A possible improvement is to 
attempt local expansions. (16"L7"2°) Points can be 

clustered, and for each of the resulting clusters a principal 
component analysis can be attempted. The previous 

reasoning can be applied and the class is represented 
by a set of linear subspaces. A nice application of 
this approach can be found in reference (16) where the 
space spanned by faces is first clustered into views 
corresponding to different poses and the resulting clus- 
ters are then described by the most important principal 

components. 
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i ̧  

Fig. 14. The map of the residual size (left) and of the projection probability (right). Note how the probability 
is low in regions where the reconstruction is good. The darker the value the lower the distance and the higher 

the probability. 

7. AN EXPERIMENTAL COMPARISON 

In order to clarify the practical relevance and the 
relative merits of the previous template-matching tech- 
niques, it is useful to compare them on a single task. We 
choose to assess the performance of the different tech- 
niques on the problem of locating eyes in frontal images 
of faces. This is a preliminary step for identifying the 
represented person by comparing his/her image to a 
reference database. The available database consisted of 
180 images (three images, taken at different time, from 
sixty different people). The eyes were manually located 
and images normalized by fixing the position of the eyes 
to standard values. The resulting normalized images 
(with an interocular distance of 28 pixels) were used 
for the experiments. Three different disjoint subsets, each 
consisting of the images from 18 different people were 
used in turn for building the SDFs, lsSDF and KL 
expansions. Performance was then assessed on the re- 
maining images. 

For each of the compared strategies and testing 
images, a map was computed reporting at each pixel 
the absolute difference of the computed values (residual, 
correlation, etc.) from the required values at the pattern 
(i.e. eye) location (e.g. 0 for the residual, 1 for correla- 
tion). The resulting maps could then be considered as 
distance maps. For each image we masked in turn the 
region of the left and right eye. The unmasked eye was 

considered to be located correctly if the smallest distance 
value was within 8 pixels from the correct location 
(manually detected). 

As far as the SDFs and lsSDF are concerned, a single 
image from the represented persons was used in building 
the filters, while the computation of the KL components 
relied on all the available images in the training subset. 
For all of the techniques the test was run on 120 images. 
Both left and right eyes were used in building the filters 
and the expansions. In order to assess the performance of 
the techniques, each image was used to locate both eyes 
by masking in turn the left and right eye region when 
looking for the maximum/minimum values ideally asso- 
ciated to the template location. 

Several variants of the KL approach have been in- 
vestigated using distances from and within the feature 
space. The external distance de is simply the error in the 
reconstruction of the pattern using the restricted eigen- 
vector basis [see equation (50)]. The internal distance di 
is the distance computed within the linear subspace from 
its origin (the centroid of the patterns). The spherical 
internal distance ds, is the Mahalanobis distance in the 
linear subspace. 

Let us assume that the orthogonal vectors defining the 
linear pattern subspace are known or computed reliably 
from a subset of the available examples. We could then 
estimate the Mahalanobis distance by computing the 
variance for each of the (uncorrelated) coordinates using 
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Fig, 15. Distribution of the distance values orthogonal to the feature space when projecting onto the first 10 
eigenvectors. 

all the available samples. Some of the examples could be 
erroneous or atypical and would probably lead to an 
overestimated variance. In order to overcome this poten- 
tial problem, a robust estimate of the scale parameter of 
each coordinate was computed using the tan-h M-esti- 
mators introduced by Hampel. (32) Finally the combined 
distance [see also the related approach in references (18- 
20)] was computed by the following relation: 

dc = max , , (55) 

where the normalizing factors ds0 and de0 define the 
points at which the cumulative distribution of the internal 
and external distances reaches 99% (see Figs 15 and 16). 
The performance of the different variants is reported in 
Fig. 17. 

SDFs and IsSDF were built using different amounts of 
regularizing noise ]using equation (40)] and of tem- 
plates. The resulting performance, together with the 
performance of standard correlation is reported in 
Fig. 18. It is interesting to note the major impact of 
the regularizing noise on the performance of this tech- 
nique. However, the bias and variance of the filter 
responses on the test images are not related to the filter 
performance. 

The combined distance dc is the best among the 
compared strategies. Its decline in performance with 
increasing dimensionality of the expansion basis is linked 
to the trend of the external distance performance. By 
using more and more eigenvectors we allow for good 
reconstruction of patterns different from eyes. At the 
same time the scaling factor computed from the distance 
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Fig. 16. Distribution of the distance values within the feature space when projecting onto the first 10 

eigenvectors. 
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Fig. 17. Performance of different strategies based on the computation of principal components. The 
horizontal axis reports the number of components used in the expansion, while the vertical axis reports the 

percentage of eyes correctly located (see text for a detailed explanation). 

40  

distribution on the training samples becomes very small 
(should we use all of the computed eigenvectors the 
samples could be reconstructed exactly). Therefore the 
external distance is the (wrong) dominating factor in 
equation (55). A more sophisticated integration is pre- 
sented in reference (20). The performance of the template 
matching strategies based on KL expansions is consis- 
tently higher than the one achieved by SDFs in the 
reported variants. Also, expanding a pattern onto an 
appropriate basis seems to provide reliable template 
matching to patterns which span a manifold which can 
be approximated well (at least locally) by a linear 
(tangent) space. (15'28-3°) 

The next section will introduce nonlinear machinery 
(sigmoidal and Gaussian network) for the purposes of 
pattern description and classification. 

8. F U T U R E  DIRECTIONS:  LEARNING AND SDF 

The description of the advanced SDFs has shown that 
they can be considered as standard SDF working on a 
preprocessed signal. The characteristics of the original 
signal and noise are used in the synthesis of the pre- 
processing filter to achieve optimal sharpness in the 
correlator response. If we look at the patterns in the 
transformed space, the correlator output is a weighted 
average of the correlation with a set of examples: 

~'(x) ® h'(x) : ~ b~O'(x) ® 01(x), (56) 
i=l.. . . ,n 

where the prime refers to the transformed space. The 
patterns 01 can be randomly chosen among the available 
examples or selected according to particular criteria. A 
possible strategy is to synthesize the filter incrementally: 
the response of the filter on all the training images not yet 
used to build the filter is computed and if the worst filter 
response is not acceptable the corresponding image is 
added to the building set and a new filter is computed. (11) 
The construction of the filter, apart from the phase of 
selecting meaningful training images is linear. An im- 
provement is expected with the introduction of nonli- 
nearity in the filter design. We propose the use of 
approximation networks ~31) to build general nonlinear 
filters which are able to discriminate pattems of different 
classes while giving the same response on patterns of the 
same class. These filters can be considered as a general- 
ization of the projection's Synthetic Discriminant Func- 
tions. They are built using a set of training images and a 
set of soft (i.e. not exactly met) constraints on the filter 
output. 

The general structure of the network is reported in 
Fig. 19. The units of the first level represent sigmoidal 
(comparison by projection) or Gaussians (comparison by 
distance) functions: 

O1i(¢/1) = ~ exp[-(~b - t i ) T w T w ( 0  - -  t i ) ]  Gaussian, 
I Cr(~. ti ÷ r )  sigmoidal. 

(57) 

In both cases, the system is able to mask regions of the 
templates which are not useful for obtaining the required 
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Fig. 18. Performance of least squares SDF with different amount of regularizing noise. Correlation 
performance is also reported using the average template and the whole set of available templates. The 
horizontal axis reports the number of patterns used in building the filters, while the vertical axis reports the 

percentage of eyes correctly located (see text for a detailed explanation). 

output values 2. The first level of the network can be seen 
as computing some "optimal templates" against which 
the input signal is to be compared. The output of the 
second level is computed as 

bjo2j(o~) (58) 
J 

and the function implemented by unit ozj can be of the 
Gaussian or sigmoidal type independently from the 
choice of the first layer units. The second level computes 
a nonlinear mapping of the projections (or distances) of 
the signal by minimizing the square error of the network 
on the mapping constraints (soft, as they are not met 
exactly). In some sense, the network triangulates the 
position of the input signal in pattern space using the 
distances from automatically selected reference tem- 
plates. The resulting networks have a very high number 
of free parameters and their training presents difficulties. 
Among them two are of particular concern: overfitting 
and training time in a high dimensional space. A way of 
coping with the first one is that of cross-validation: (22) the 
network undergoes training as long as its performance on 
a test set improves. We propose to reduce the effects of 
high dimensionality by using a hierarchy of networks of 
similar structure but working at increasing resolution. 

2This is achieved during the training phase by modification 
of the entries of the matrix W, if Gaussians are used, or ti if 
sigmoids are used. Relatively small values give low weight to 
the differences of the corresponding coordinates, thereby 
making the system output weakly dependent on them. 

The network with the lowest resolution is trained first and 
extensively. The next network in the hierarchy is then 
initialized by suitably mapping the parameters of the 
previous one. Note that only the first level needs to be 
modified structurally. A reduced training time is ex- 
pected. The procedure is iterated at all the levels of 
the hierarchy. A side effect of the hierarchical training 
is to provide fully trained networks for different resolu- 
tions, enabling a hierarchical approach to template 
matching. The preprocessing stage of the network is 
the one computed for the synthesis of the ASDF. The 
optimal templates used by the first layer of the network 
can also be initialized using the building patterns of the 
linear filter. 

9. CONCLUSIONS 

Several approaches to template matching have been 
reviewed and compared on a common task. A new variant 
of Synthetic Discriminant Functions, based on least 
square estimation, was introduced. Several template 
matching techniques based on the expansion of patterns 
on principal components have been reviewed. A simple 
way of integrating internal/external distances within/ 
from a linear feature space was also proposed. Several 
of the techniques mentioned in the paper have been 
compared on a common task: locating eyes in frontal 
images of different people. The techniques based on 
pattern expansion provide superior performance, at least 
in the particular task considered. Finally, a two layer 
approximation network has been proposed to generalize 
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Fig. 19. An approximation network for template matching. The preprocessing stage applies simple 
transformation to the input pattern (e.g. to emphasize high frequency components). 

the structure of SDF to a nonlinear filter. Future work will 
explore the advantages and difficulties of the introduc- 
tion of nonlinearity. 
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