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Abstract

An algebraic characterization of convolution and correlation is
outlined. The basic algebraic structures generated on a suitable
vector space by the two operations are described. The convolution
induces an associative Abelian algebra over the real field; the
correlation induces a not-associative, not-commutative - but Lie-
admissible algebra - with a left unity. The algebraic connection
between the two algebras is found to coincide with the relation of
isotopy, an extension of the concept of equivalence. The interest of
these algebraic structures with respect to information processing is
discussed.

1. Introduction

As long as a system is linear and space- or time-
invariant, its operation upon an incoming signal may
be represented as the convolution of the signal with the
particular response function (the Green function)
characterizing the system.
Convolution is a concept of wide application; window,
grating, filter, transfer function, dissipative response
and feature extractor are all terms belonging to its
language and are taken from such diverse fields as
optics, electronic engineering, sensory physiology and
pattern recognition, with physics providing many more
examples.

The convolution operation relates the input x(O to
the output y(() through the Green function of the
system h(O, according to

y(O = JX(fl) h(( - fl) dfl =x * h .

In practice, one is usually confronted with the problems
of deconvolution- identifyingh(() from pairs of x(()
and y(O - or deblurring -finding the x(() associated
with a given y(O and h(O. In solving this class of
problems an important and almost indispensible tool
is the correlation operation, defined as

c(O= Jg(fl) f(fl + () dfl =g @ f.

Correlation is no less restricted in range of application
than convolution, and it has been increasingly recog-
nized in recent years that the two concepts form a

mathematical language which underlies many different
formalisms in physics (see, for example Martin, 1968)
as well as in the information sciences.

The single field of holography is an excellent
illustration of the broad applicability ofthese concepts.

The transformation achieved in holography from
the recording to the reconstruction can be generalized
as a combination of convolution and correlation:

B' = (A @ B) * A' , (3)

(1)

where A, B are signals, A' is the "recall" signal, B' is
the reconstructed one. The same mathematical struc-
ture is basic to today's broad field of optical computing
(Stroke, 1969, 1972; Toraldo di Francia, 1969), and
in the communication sciences a variety of techniques
(Leith, 1971) are recognized as holographic-like,
sharing the same mathematical formulation of holo-
graphy. Many processes we call holographic-like
depend upon rather different physical mechanisms.
Again it is the common underlying formal structure,
Eq. (3), that unifies them. For instance the most
meaningful aspect of the analogy between holography
and memory brought up in recent years (Julesz,
Pennington, 1965; Longuet-Higgins, 1968, 1970; van
Heerden, 1970; Watson, 1971) is clearly not directly
concerned with the physical mechanisms involved but
rather with the underlying logic, a particular sequence
of convolution and correlation (Borsellino, Poggio,
1971, 1972; Gabor, 1969; Poggio, 1970).A few func-
tional properties of nervous systems support this
point of view, suggesting the existence of a correlation
principle of brain function (Reichardt, 1957,von Seelen,
Reinig, 1972; Altes, 1971).

Therefore it seems quite interesting to consider
the formal structures induced by the operations of
correlation and convolution from an algebraic point
of view. This approach might offer some insight into
the general properties of those (information) systems
characterized by the convolution and correlation
structures.

(2)
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In this paper, only the main ideas of an algebraic
approach will be outlined. More specific results will
be dealt with later on (Poggio, 1973b).

2. The Correlation and Convolution Algebras

Convolution and correlation operations are defined
in the usual way on the linear space of functions with

.a "well-behaved" Fourier transform (for example the
Hilbert space L2( - 00, 00) or suitable restrictions of it).
The convolution function of I(t) and g(t) is then

(f * g),";' lim 2
1

T r I(t) g(T- t) dt
T~oo - T

and the correlation is

1 T

(l@g)t=lim- 2 f/(t)g(t+T)dt.
T~oo T"':T

If I and g are aperiodic functions, definitions (4)and (5)

take the forms (With 300 If(t)/ dt, -IIg(t)1dt finite)
00

(f*g),= S l(t)g(T-t)dt,
-00

00

(f @ g)t = S I(t) g(t + T)dt .
-00

The extension to functions of many variables is
straightforward.

The Fourier isophormic relationships are (dis-
regarding normalization factors)

(f * g)-+ F(w) G(w)

and

(I @ g)-+ F(w) G(w)

where F and G are the Fourier transforms of I and g,
and F is the complex conjugate of F. Eq. (9) is usually
referred to as the Wiener theorem.

It can be seen from definitions (4)and (5)that under
the apparent similarity an important difference exists:
convolution is commutative and associative, correla-
tion is neither commutative nor associative. As a
matter of fact, in the Fourier isomorphic space, where
multiplication is by definition commutative and
associative, the following relations hold

1* g<-+FG 1* (g * h)<-+FGH

g * f <-+GF (f * g) * h<-+FGH

I @ g<-+FG . I @ (g @ h)<-+FGH
- * - * (11)

g @ f <-+GF (f @ g) @ h<-+FGH

(4)

It is straightforward to check (see Appendix I) that,
with the usual operations (addition and multiplication
with scalars) correlation and convolution induce, on
the space L2, two algebras, denoted respectively by
U* and U@.We may regard the algebras U* and U@as
having the same quantities but different laws for
forming products.

In the following, we restrict our attention to
discrete spaces. In particular, we consider the linear
algebras B* and B@ over the real field, which consist
of all vectors I

I =(..., I-I' 10' II"")

together with the following product laws

(12)

(f * g)m= Lhgm-i,
i

(13)

(5)
(I @ g)m= Lhgm+i'

i
(14)

(6)

As shown in Appendix II the algebras B* and B@have
a direct physical interpretation. In fact the infinite
vectors f can be assumed to represent in terms of the
Whittaker basis the class of band-limited real-valued
signals.

(7)

3. Structure of B* and B@

We begin by outlining the structure of the algebras
B* and B@ over the real field JR.They consist of the
linear space L of all vectors (12) together with a set of
quantities Yijkin JRsuch that the products

(8)

v = 1* g = (..., I-I' 10' II,"') * (. .., g-I, go,gl,' ..) (15)
=(",V-I' vo,VI"")

and

(9)
w= I @ g = (...,1-1,/0'/1"") @ (..., g-I, go, gl"")

, =(",W-I,WO,WI"") (16)

are defined - in B* and B@ respectively - by

Vk= Ly'0khgj
ij

(17)

and by

Wk = L y<fAhgj'
ij

(18)

From definitions (13) and (14) one obtains

(10)

Y0k = bk,j+i'

@ -bYijk- k,j-i,

(19)

(20)

where b"l is the usual Kronecker symbol. The multi-
plication constants Yijkdefine completely the structure
of the convolution and correlation algebras.
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As a "measure" of the commutativity and associ-
ativity of the two algebras we introduce the
commutators

[f, g]* = 1* g - g * I

[f,g}~=1 @ g-g @ I

and the associators

(f, g, h)*= I * (g * h)- (f * g) * h

(f, g, hf$J= I @ (g @ h) - (f @ g) 0 h.

It is again straightforward to show that for B*

[f,g]*=O (f, g, h)*=0,

but for B@

[f,g]@$O (f, g, h)@$ 0,

which again characterizes B* as an Abelian, associative
algebra and B@as a not-associative, not-commutative
one (see Appendix III).

The general problem of non-associative algebras
has not been studied very much: we will refer mainly
to the work of Albert (Albert, 1942; see also Schafer,
1966). On the other hand theories of special not-
associative algebras have already yielded much of
importance. Among them we especially mention the
alternative algebras, Lie algebras and Jordan algebras.
It is perhaps not without interest that the not-associ-
ative algebras mentioned above are basic tools in
modern physics. The correlation algebra does not
belong to anyone of these special cases (see Table 1),
as is easily checked. On the other hand the algebra
generated by the correlation commutator is a Lie
algebra, that is

[f, fJ@=O, 25
[[f,g]@,h]@+[[g,h]@,fJ@+[[h,fJ@g]@=O. ( )

The Jacobi relation (25) represents a property of
associative algebras, which, however, does not hold
in general for not-associative algebras. Since any

Table 1. Characteristic properties of some not-associative algebras

Alternative algebras x2y;:X(xy)

xy2;: (xy) Y
X2;:0

((xy) z) + ((yz x) + ((zx) y);: 0

[x,y] =0
(xy) X2 = x(yx2)

x2y;:(yX)x
xy2;: y(xy)

Lie algebras

Jordan algebras

Correlation algebra

(21)

algebra is defined as Lie-admissible if its commutator
algebra is a Lie algebra (Santilli, 1968),we have then
the followingnon-trivial result, namely that the cor-
relationalgebra is Lie-admissible 1. A very interesting
feature of Lie-admissiblealgebras- which is likelyto
have a direct physical meaning (Santilli, 1968) -
is that methodological procedures used in the theory of
Lie-algebras can be extended to Lie-admissible alge-
bras if some other suitable condition is introduced.

(22)

(23)
4. The MultiplicationSpaces of B* andB @

To characterizefrom an algebraicpoint of viewthe
properties of the not"associative algebra B@,we now
introduce - followingAlbert's treatment - the multi-
plication spaces of the convolution and correlation
algebras.

We define T(j) as the square matrix with Yijkin the
ith row and kth column, and then we associate with
every IE B' (where. indicates @ or *) the following
matrix

(24)

TJ="'+T(-I) 1-1 +T(O) Io+T(I) 11 +"'. (26)

It is then clear that

g'I=gTf' (27)

where gTJ is computed as usual. In an analogous way
we define the matrix L1(i)with element (j, k) = Yijk and
we associate with every I E B' the matrix

LlJ='" +,1(-1) 1-1 +LI(O)Io+LI(I) 11 +"'. (28)

It is again clear that

f.g=gLlJ' (29)

Since matrix multiplication is associative,

(h. I}g = h(TfTg) = (hTf) Tg. (30)

All linear transformations R on L with matrices TJ
(defined by h -'> hR J = h.1) form the right multiplica-
tion space R(B') of B'. The l~near transformation LJ
given by h --->I .h = hLJ' forms the left multiplication
space L(B} The linear mapping 1-'>LJ determines and
is completely determined by R(B'). For correlation
and convolution algebras, TJ and ,1J have the fol-
lowing matrix form (when L is the vector space

t An algebra is said to be Jordan-admissible if the anticom-
mutator {a,b} = ab + ba is a Jordan algebra. It is easy to prove
that B@ is not Jordan-admissible.
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F=(..., C-1, Co, C1,...),

(

...
*- *-

TF-,1F- ...

@-

(
TF - :::

J~~(

C-1
0

0

Co 0
0 C1

),

).

).
It is easy to check the specific form of T(i) and ,1(i),
as well as the equivalence of definitions (13), (14) with
definitions

0 C1

0 Co 0

C-1 0

C1

0

0

Co 0

0 C-1

f * g = f Tg* = g,1'},

f * g=fTf=g,1r;.

Symbols P and D denote even and odd functions respectively. The
products are defined as follows:

(36)

axb=[a,b]@=a@b-b@a,

a x tb = {a,b}@= a @ b + b @ a.

The functions (or the representing vectors) are assumed to be
real-valued.

(37)
dual diagram pertaining to the anticommutator.
Therefore the [,]@ operation is able to "extract"
from two real signals the common "antisymmetry"
or "oddness"; the dual statement is true for {, }@.
The meaning of such a "symmetry extraction" may
be important in problems of information processing
(see Reichardt, 1973).

Interesting subalgebras of U* and U@ are the
functions whose frequency transform is identically
zero outside some interval belonging to Imol.It is
always possible to select from them a set of invariant

(38)

(39)

representing band-limited functions in the {an} basis): We have thus related the properties of B* and B@ to
...

).

the properties of the correspondingspaces R(B) and
L(B) in whichmultiplicationdoessatisfythe associative

(

fO fl f2 law. The reason for carrying out this treatment for B**- *-
f-l fo fl (31) as well as for B@will become clear later when we will

TJ -,1J - ::: f-2 f-l fo find the algebraic connection between convolution and
... correlation. The matrices ,1 and T represent also a

specific algorithm for the computation of convolution

r,{

...

).

and correlation.

f-2 f-l fo

f-l fo fl (32)

fo fl f2 5. Subalgebras and Ideals
...

A quite obvious subalgebra of B* as well as of B@

J+

...

0)

is the set of all even vectors, that is the vectors p:

fo f-l f-2 Pn=P-n' (40)
fl fo f-l (33)

f2 fl fo We call these subalgebras E* and E@ respectively.
... It turns out that E@ is associative and commutative;

actually E* ==E@. The set of odd vectors is a sub algebra
It is instructive that for real-valued functions belonging neither of B@ nor of B*. On the other hand, the
to T L2 (time-limited functions), the T and ,1 matrices commutator correlation algebra has the interesting
take, in the discrete Fourier basis, the following multiplication diagram (with respect to even and odd
form with vectors) which is shown in Table 2, together with the

(34)
Table2

I
p D xl P D

-

(35) 0 D P
I

p 0
D 0 D 0 P
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subalgebras IIa for which the following properties hold

IIa' U' ~IIa

IIa"IIa' ==0 where U' is U* or U@

uIIa=U',

The IIa's are of course ideals of U* and U@.According
to the usual decomposition theorems, U* and U@are
reducible to the sum of a suitable set of IIa. The
properties of U* and U@(and of course of the associ-
ated discrete algebras B* and B@) are therefore the
sum of the properties of IIa's, and it is possible to
perform multiplication and addition componentwise.
For example, for f, g E U@

J=h1+hz . h1,11EII1
wIth ,

g=11+lz hz,lzEII2

it holds that

J @ g = h1 @ 11 + hz @ 12 .

In the limit of IIa being single-frequency components,
the decomposition theorem stated above becomes the
Wiener theorem. It is perhaps interesting to notice
that the analysis of a signal in terms of ideals which
are not the single Fourier eigenfunctions is nevertheless
an "orthogonal" decomposition with respect to cor-
relation and convolution.

Another interesting and obvious result is that the
set of all "noiselike unities", that is, the vectors na
such that

(na * na')i = ()a,a' ()O,i ,

generate a subalgebra N@ of B@ (see Appendix IV).
It may be recognized that the associated functions
play an important role in holographic associative
memories and in holographic-like analogues of human
memory (Longuet-Higgins, 1968;Gabor, 1969; Borsel-
lino, Poggio, 1972).All complicated patterns (practical
examples are printed letters or ground glass surfaces
or impulse sequences which are coded according to
pseudorandom shift register codes) are, in first ap-
proximation, noiselike functions (Gabor, 1969) whose
algebraic characterization is given by (44). We will
return to this point later.

6. Divisorsof Zero andSimpleness

We shall call the element c belonging to an algebra
U a right divisor oj zero if there exists b =1=0 such that
b. c = 0 and c =1= O.A quantity c of U is called an absolute
divisor oj zero if c =1=0 and c. b = 0 for every b E U.

(41)

According to these customary definitions it is
obvious that B* and B@do not have absolute divisors
of zero. In general they have divisors of zero which
correspond to the functions (=1=0) whosespectrum is
zero in some interval inside (coo).It is therefore clear
that B* and B@ are not, in general, simple algebras.
An algebra U over Ji is called simplewhen zero and U
are the only ideals of U. Moreover, every division
algebra is simple. It will sometimes be useful to
consider the subalgebras D* and D@of B* and B@as
defined as the set of all vectors corresponding to the
bandlimited functions with a non-zero spectrum in
all the intervals Icool'D* and D@are simple division
algebras without ideals: in particular D@contains N@.
Some implications of this algebraic picture will be
discussed later.

(42)

7. Unity

The unity of B* is shown to be
(43)

e=(...O,O, 1,0,0...). (45)

(44)

ao(t) = sin COot
COot

(50)

whose Fourier transform is

{

I for lcol< COo

Ji [ao(t)] = 0 for lcol~ coo.
(51)

---

The not-associative algebra B@has only the left unity

e=(...O,O, 1,0,0...) (46)

which is identical with (45).Therefore
...

), (47)J'r' (H

0 1 0 ...
... 0 1 0 ...e e

... 0 1 0
...

J (H

...
0 1 0
... 0 1 0 ... I , (48)

... 0 1 0

but

r{

...

H) . (49)

... 0 1 0
... 0 1 0 ...
0 1 0 ...

...

We notice that the quantity e represents, in the
Whittaker basis, the bandlimited function
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8. Isotopy

Up to now we have characterized to some extent
the convolution and the correlation algebras. B* turned
out to be an associative, commutative algebra with
unity, generally not simple. We stated that B@ is a
not-associative, not-commutative algebra with a left
unity, generally not simple, with the same ideals
as B* and a commutator algebra which is a Lie algebra
so that B@ is also Lie-admissible. We have not yet
stated the algebraic connection between convolution
and correlation. For this purpose we shall introduce in
the following the concept of isotopy of algebras, an
extension of the concept of equivalence (Albert, 1942).
In this way we will be able to overcome the undesirable
narrowness of the concept of equivalence for non-
associative algebras, and then to obtain an associative
"representation" of the correlation algebra.

As we stated before, if two algebras A and A' are
given on a linear space L, the multiplication spaces
R(A) and R(A') with the corresponding mappings

and
a--+Ra

a --+R~

are therefore determined. We now say that A is
isotopic to A' if there exist non-singular linear trans-
formations P, Q, C such that

Rj=PRfQC,

It is possible to show that conditions (52)are equivalent
to

Lj=QLfPC,

The relation of equivalence is a particular case of the
relation of isotopy.

It is generally more convenient to replace A' by an
equivalent algebra so that we can introduce the
concept of a principal isotope of an algebra to which
every isotope of the algebra is equivalent. We shall
say that A is a principal isotope of Ao if there exist
non-singular linear transformations P and Q such that

Rj=PRfQ' L"f=QLfP'

The relation of principal isotopy - as well as the
relation of isotopy - is a formal equivalence relation.

With respect to correlation algebra the following
result holds (Borsellino, Poggio, 1971):

the correlation and convolution algebras B@and B*
are principal isotopes.

The proof is immediate when it is noticed that the
relation of isotopy does not depend upon the basis
chosen. Therefore we merely assume for Rf;L~ and Rj
the matrix representations (32), (33), (31). It is then

The matrices Q and P represent the identity and the
reflection transformations. They satisfy the conditions

Tf=PTjQ'

A~=QAjp.

(57)

(58)

(52)

The same matrices define the same relation of isotopy
for the vectors in the Fourier space associated with
timelimited real-valued functions.

It is important to stress again that the concept of
isotopy coincides with the concept of equivalence for
associative algebras with unity. In other words, the
correlation algebra has some associative "representa-
tion" through the isotopic relations (57) and (58).
By means of them, a few theorems (Albert, 1942;
Bruck, 1944) become readily available. They allow
one to derive properties of B@ from the structure
of B* and to characterize further the correlation
algebra (Poggio, 1973b). For example, interesting
statements can be proved about alternative isotopes
of B@;the center and the centralizer of B@l1avea non-
trivial structure (seeAppendix V); the properties which
characterize the correlation algebra can be compared
with the ones pertaining to other not-associative
algebras (Appendix VI).

(53)

(54)
9. ConcludingComments

We shall now briefly mention some implications
of the algebraic properties which have been outlined
above.

As we already said in the introduction, a very large
body of optical techniques - and electronic ones -
show the structure of a convolution-correlation alge-
bra. It is then rather easy to translate physical concepts
into algebraic terms. For example, the concept of
frequency filtering through convolution and correla-

easy to check that relations (54)are satisfiedfor B*
and B@ (being Ao and A) by the following non-
singular matricesQ,P

Q{

...

}

1 0 ...
0 1 0 (55)
... 0 1

...

p{

"'

}

... 0 1
0 1 0 (56)
1 0 ...
...
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tion must be related to the decomposition in ideals
of U* and U<¥>.Information processing by means of
frequency "channels", that is by operating inde-
pendently on different regions of the frequency band,
can show the formal structure of a non~simple con-
volution-correlation algebra. On the other hand, an
associative holographic-like memory shall present, in
general, the structure of a simple division algebra
(no frequency "holes"). Threshold systems might allow
the transition from a division algebra to a non-simple
one; that is, from an organized, possibly hierarchical
"filtering" stage to an associative one. Algebraic
characterization of many other techniques in informa-
tion processing is of course easily possible. At this
point, however, we shall briefly discuss the special
interest of the convolution-correlation algebra with
respect fo the theories of holographic-like associative
recall. Associative holographic-like memories can be
described with the following symbolism (Gabor, 1969).
In order to associate a temporal or spatial signal a
with b, we first store the function

JPab=a*b.

To evoke a by means of b it is sufficient to correlate JPab
with b or a part of it, provided that b is noiselike
(i.e., is a function with a delta-peaked autocorrelation).
Then a is recalled according to

b@ JPab=a*(b@ b)==:a.

In terms of the algebraic algorithms developed in
relation with the multiplication spaces of B* and B<¥>,
Eq. (60)can also be written as

b @ (b * a)= aAt Llf ,

where LItAf is given by

(

...

) (

... bo bl... ...
At Af= ... b_1 bo bl... ...

.. . b- I bo ...

bo b - I ...

)
b I bo b - I ... .
... bl bo ...

Since the vector b is supposed to belong to N<¥>,it is
easy to check that only diagonal terms of the resulting
matrix are different from zero, that is

J: JI"{
0
1

) ~ r:" (,.y) (63)

1
0

0
1
0

giving, therefore, the result of Eq. (60).

(59)

It is interesting that this association scheme is
formally equivalent to classical Pavlovian stimulus-
response learning (Poggio, 1970).The formal organiza-
tion of such a memory can be embedded in a vector
space with the two superimposed structures of a cor-
relation and a convolution algebra. In this language
the basic characterization is that the key functions,
or stimuli, (like b) must belong to N<¥>,the subalgebra
defined in an earlier paragraph. Since the set of
"noiselike" functions is closed (see Appendix IV), it is
of course not possible to have a noise-like basis for
U<¥>,that means for the complete signal (or stimuli)
space. Rather, in order to implement an associative
memory in a convolution-correlation structure, it
seems necessary to induce a suitable isomorphism
between the signal space and a noiselike set. That
means some "noise coding" of the input signals which
have to be mapped into random or pseudorandom
sequences. It is not the purpose of this paper to discuss
any potential interest of this observation with respect
to neural codes and internal "language" of the brain.

Starting from the associative convolution-correla-
tion property, many implementations are of course
possible. As a typical example, a system incorporating
a prefilter or coding stage and a holographic-like
memory of the type (59), (60), will belong to the class
oftwo-Iayer perceptrons (in the wide sense).In addition
to an optimal noiselike coding of the input patterns
according to their "survival value" simple non-linear
"clean-up" procedures at the output can easily improve
the signal-to-noise ratio of such an associative memory.
An almost infinite number of more complex schemes
are also possible (Poggio, 1970)- always presenting the
basic holographic-like structure. The relationship
between convolution and correlation as shown by the
isotopic theorem can be expressed in words in the
following way: correlation always implies a "direction"
in the processing of information since it discriminates
between the "order" of interacting signals and the
"channels" from where they are coming; convolution
does not. The introduction of the correlation algebraic
structure besides the convolution algebra seems suf-
ficient to provide simple associative memory and
pattern recognition properties. On the other hand,
not-associative algebraic structures may be basic in
describing complex phenomena. Genetic algebras are
an example. Moreover, it is possible to prove that a
formal algebraic structure with two product laws, is
able to mimic an associative Pavlovian learning if at
least one of them is not-associative (Poggio, 1973b).

Finally, we want to suggest that correlation can be
regarded, in a useful sense, as some first approximation
to non-linear interactions of information flows. This

(60)

(61)

(62)
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Appendix npoint of view, which has some statistical counter-
parts, should characterize better the meaning and the
range of application of the "correlation" approach.

In this sense it is clearly possible to extend both
convolution and correlation as well as the basic
holographic associative scheme [Eq. (60)] in order to
take into account higher order non-linearities. From
this point of view, for instance, holographic memories
become a special case of a more general class of associ-
ative memories, based upon a non-linear extension of
the convolution operation (Poggio, 1973a). Clearly, an
approach like the algebraic one might be very appro-
priate for this kind' of extension because of the usual
difficulties analytical techniques are confronted with
in obtaining general results for non-linear problems.

Acknowledgements. We thank Dr. B. Rosser for correcting the
English and Miss I. Geiss for typing the manuscript. One of us
(T.P.) also acknowledges support from a C.N.R. fellowship for part
of the work.

Appendix I

We assume that the functions fit) are absolutely integrable in
( - 00, + 00), that is

00

J If(x)1 dx 3 .

This assumption is certainly too restrictive in many cases, but it is a
convenient starting point. From (1.1) we are able to define a precise
frequen,;y-transform pair

F(w)= J f(x)e-iroxdx.

We want to show that with the products defined by (4) and (5) the
class of real-valued functions satisfying (1.1) becomes an algebra
U* and an algebra U@ over the real field. .

Since the class of functions (Ll) is a Hilbert space, we need
only show that:

a) the products (4), (5) are inner laws.
In fact, through the Wiener theorem, we can assume that if f

and 9 have a Fourier transform their correlation and their convolu-
tions also have a Fourier transform.

b) The following distributive laws hold:

(f + g) @ h = f @ h + 9 @ h

h @U+g)=h @ f+h@ 9
and

(f + g) * h = f * h + 9 * h

h * U +g)=h* f +h *g.

In fact they are trivially true because of the distributivity of integrals.

c) The multiplications are bilinear:

aU @ g)=(af) @ g=f @ (ag)

aU * g) = (af) * 9 = f * (aa) ,

where a is in the real field. This is again trivially true. Therefore
U* and U* are two algebras according to a definition of algebra
which does not assume the associative property for multiplication.

We consider the class of band-limited functions IWolwhich are

square-integrable. A function fit) E L 2 is said to be band-limited to
Wo if F(w) vanishes outside (- Wo, wo). We shall denote this class of

functions as BL~o' The restriction, even if not completely necessary,
is not without interest provided that all "physical" signals belong,

for all practical purposes, to BL~o' The linear class of functions
band-limited to (- wo, wo) is closed and forms a Hilbert space all
by itself. In terms of the Whittaker basis

sin(wot - nit)
a.(t)=

wot - nit
(2.1)

the functions fit) E BL~o have the following representation

f(t)= I f (~ )sin(wot-nlt) .
-00 Wo wot-nlt

(2.2)

It is easy to show that the linear space BL~o is an algebra U:o and
an algebra U~o with the products defined as (I) and (2) respectively.
If the functions fit) and g(t) belong to BL~o' then

(f * g)EBL~o

(f @ g)EBL~o'

According to the sampling theorem, the function fit) has the fol-
lowing discrete representation

(2.3)

00

fit) = L f.a.(t) (2.4)

(1.1)
and

f.=f( ::)
and

(1.2) sin(wot - nit)
a.(t)=

(wot- nit)

We can therefore write, from definition (4)

(f * g) (-r)= J fit) g(, - t) dt

= JL J.gma.(t) ami, - t) dt .
(2.5)

..m

Since (f * g) is a function belonging to BL2, it is possible to sample
it at points It/wo apart. We then obtain the representative vector

(f *g)~ = J L f.gma.(t)ak-m(t)dt (2.6)
roo ..m

(1.3)
where use has been made of the identity

ai( :: :t t)= aj;(i-k)(t).
(2.7)

(1.4)

The set {an} is an orthogonal set with

1t
Ja.(t) am(t)dt = - i5. m .

Wo . (2.8)

(1.5)
Therefore, from (2.8) and (2.6), interchanging the order of integration,
we obtain

It 1t

(f * g)k= - L f.gk-. = -(..., Lf.g-., L J.gt ). (2.9)
Wo j. 'wo
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In a completely analogous way, starting from definition (4), we get

n n
(f @ g). = - IJ"g"+k= -(...,I f"g", I f"g"+I>"')'

Wo " Wo

It is therefore clear that the linear algebras B* and B@ defined by

Eqs. (13), (14) are a representation of U~o and U~o in the Whittaker
basis. This point of view offers a direct physical meaning to the
discrete algebras B* and B@ in terms of band-limited signals. The
restriction to finite dimensional algebras has again a physical
meaning (though definitions (13), (14) must, in that case, be con-
veniently changed).

In fact one can consider only those signals in B L~o whose energy

is "principally" contained in a finite time interval (- ~, ~).
It is then possible to make the Shannon assumption that there are
only a limited number S (Shannon number) of "physically meaning-
ful" sampling points

S= Two
n

(2.11)

In this way we are able to describe the band-limited signals,further

limited to (- ~, ~),as the finite vectors

f = (f-" f-d "..., fo, f"..., f,). (2.12)

However, we must observe that (2.12) is only an approximation for
the associated function: it is mathematically impossible to reconcile
the idea of a function being limited in both the frequency and time
domains because of the uncertainty principle (Landau. Pollack,
1961). For the same reason band-limited functions do not have a
discrete image in the isomorphic Fourier space.

Estimates of the errors induced by the Shannon assumption
can be found in the literature (e.g. Thomas. 1963). They tell how
closely the finite algebras B* and B@ represent band-limited signals

that are time limited to (- ~, ~). In this paper, however, we
rather assume infinite dimensional spaces, remembering that,
whenever algebraically convenient, the reduction to finite dimensions
still holds a clear physical meaning.

Appendix ill

The check of associativity and commutativity is trivial using
either definitions (14), (13) or the Fourier equivalent relationships
for the corresponding band-limited functions. We shall rather
consider the commutative properties of B* and B@, introducing
another algorithm. From the vectors f and g (real-valued).

f =(..., f-I' fo, fl"")

g = (..., g-I, go, g"...)

the following matrix is formed

( )= (f ,J.. ~ f.g.

f-Ig-I

fo g-l

f-Igo f-,g,

fo go fo gl

fl go fl gl

It is easy to see that, according to definition (14),

(f @ g)k= trk(fg),

where trk indicates the sum of the matrix elements which are located
on a diagonal parallel to the main one ((f g),) but displaced to the
right by k. Of course trk=o ==tr. On the other hand

(f * g)k = trt(f g), (3.4)

where trt indicates the operation of adding all the matrix elements
parallel to the main antidiagonal (f g),. - i and displaced to the right
by k.

It is clear that

(gf)=(fg)' , (3.5)

where t indicates the transposed matrix. Since the (tr*)k operation

is invariant under transposition when (tr)k is not (trk(gf) = tLk(gf)'),
we conclude that convolution is commutative and correlation is not.

Similar arguments can be used with respect to associativity. Inter-
estingly enough, the formal operations defined through Eqs. (3.2,
(3.3), (3.4) represent also an easy algorithm for computing convolu-
tion and correlation. Simple nets (in the sense of Wills haw et al.,
1969) able to mimic in this way the holographic memory scheme
[Eq. (60)] are readily suggested.

It is also possible to obtain the number of distinct classes on
not-associative products (as in the case of B@) of n elements. One
obtains the recurrence relation

F(n)=F(I) F(n-1)+ F(2)F(n- 2)+ ... + F(n-l) F(I)
"-I (1~

= I F(k)F(n-k)
k= I

which gives

F(n) = ~(
2n-2

)n n-l' (3.7)

We have F(I)=F(2)= 1; for F(3)=2 there are the two products
(ab) c and a(bc). Of course, the number of distinct products decreases,
in the case of B@, if even vectors are present.

Appendix IV

It is only necessary to check that the set of all linear combina-
tions of "noise-like unities", as defined by (44), is closed.

In fact. from linear combinations of n" we can obtain only
noise-like vectors, that is vectors 1psuch that

(Ip @ tp), = 0,,0 .

Linear combinations as well as correlations or convolutions between

noise-like vectors give again noise-like vectors. The set of all linear
combinations of "noise-like unities" is then - when completed

with 0,.0 - a subalgebra of B@.

(3.1) Appendix V

Centralizer and center of B* and B*

From Schur lemma, the centralizer C' of an algebra is an
associative division ring. C' is defined as the set of all linear trans-
formations T such that

(3.2)
RyT= TRy

LxT= TLx.

Tberefore, if S, T belong to C' they commute;

(5.1)

(3.3) ST= TS. (5.2)
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ReferencesWe now state the following results:

The endomorphisms V which belong to C' of B* are those
V such that, in matrix notation,

V,-i,s-i = v"s'

The endomorphisms W which belong to C' of B@ are those
W such that, in matrix notation,

Wi-I,i-S = w"s

W,+i.s+i= w"s'

The matrix representation of the centralizer of B@shows, therefore,
diagonals equal in pairs with respect to the principal one. For
example

)
The center C of an algebra A is defined as the set of all quantities

c e A such that the commutative and associative laws hold whenever

c is one of the factors. Of course B* "" C. With respect to B@ the
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R'?= L'?

RifJR~=R~R~=R~, VgeB@, VceC.
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a = (...a, b, a, b, a, b,...) .

"Alternant" vectors are an ideal of B@ and they are the only ones
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Interestingly enough, the left unity e of B* does not belong to C. We
observe further that

[c,x]@""O for xeB@,ceC.

Appendix VI

The correlation algebra is characterized by the relationships

R~ R~ = L~,""'(a 0 x) 0 y = (y 0 x) 0 a,

R~L~ =R~ x @ (a @ y)=a@ (x @ y).

The last is implied, through a theorem by Albert, by the existence
of a left unity in the correlation algebra. Relation (6.1) gives

(R~j2 =L~, .

(6.2)gives

R~ L~ =R~,

Relationships (6.3), (6.4) can be compared, for instance, with the
-identities

(R,)2 = Rx' ,

(Lx)2 = Lx' ,

which, according to Table 1, characterize the alternative algebras.
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