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Correlation Coefficient Classifier.A correlation coefficient classifier
(1) was used for all analyses in this paper. The classifier works by
learning a “classification vector” for each class k, which is simply
the mean of all of the training examples from class k. To produce
a class label prediction for a test point (which can be used to
calculate the zero-one loss classification accuracy described be-
low), the correlation coefficient was calculated between the test
point and all of the classification vectors, and the class with the
highest correlation was given as the class label. To create clas-
sification scores that were used when calculating the area under
the receiver operating characteristic (ROC) classification mea-
sure, the correlation coefficient values between a test point and
the classification vector for the class of interest were returned.

Measuring Decoding Accuracy. There are several different ways of
measuring the accuracy of a decoding procedure. These methods
include the zero-one loss function (2), normalized-rank (3, 4),
ROC curve measures (5), and mutual information measures (6).
In this paper, we use the zero-one loss measure, which is the
most widely used decoding accuracy measure in neuroscience (1,
7, 8), and we also use an ROC curve-based measure which allows
us to compare the decoding accuracy of the attended and non-
attended stimuli in an unbiased way. In practice, we found all
these measures to give very similar results (Fig. S7). Below we
describe the two measures used in the paper in more detail.
Zero-one loss measure. The zero-one loss measure (which we refer
to as the “classification accuracy”) is one of the simplest de-
coding measures. This measure calculates the percentage of test
examples that were correctly classified by the classifier. Because
of its simplicity and wide use as a decoding accuracy measure, it
is our preferred measure and we use it to report the results in
Figs. 1C and 3. One shortcoming of this measure, however, is
that it is not able to handle the case when multiple classes are
present (as is the case when three objects are shown in our
cluttered displays). The reason that this measure is problematic
when multiple objects are correct is that conventional multiclass
classifiers only return one predicted class for each test point.
Thus, if three labels are correct, the classifier will only choose
one of them, and on average one would expect that the classi-
fication accuracy for each object would be approximately one-
third the classification accuracy when only a single object is
present (if the classifier is choosing randomly between the three
objects that are present). To deal with the case when multiple
correct answers are possible (i.e., Fig. 1B), we thus used
a multiclass area under the ROC-based measure that is de-
scribed below.
Area under the ROC curve measure.ROC curves graph the proportion
of positive examples correctly classified (true positive rate) as
a function of the proportion of the negative examples incorrectly
classified (the false positive rate) (5). To create such a function,
a classifier must be used that returns a classification score that
measures how likely a point is to belong to a particular class
(rather than just returning a predicted label). To create an ROC
curve for binary classification tasks, we take the classification
scores for all “negative” class test points and sort them in de-
scending order. We then measure the proportion of positive test-
point scores that are greater than each successively smaller
negative test-point score, which gives us an ROC curve, and the
area under this curve (AUROC) gives us one overall number of
classification accuracy. This AUROC measure is invariant to the
ratio of the number of positive to negative test examples (5),

which is an important property because we have different pro-
portions of positive and negative test examples in the isolated-
object decoding analyses versus the clutter decoding analyses [the
measure used by Li et al. (9) did not have this property, and thus
their results could have been biased because they had a different
proportion of positive and negative test examples in their isolated
versus cluttered decoding analyses]. To estimate the AUROC
curves in the multiclass setting, we use the “class reference for-
mulation” (5), which estimates the area under the ROC curve
separately for each class k, with the positive examples being all test
points that belong to class k and the negative test examples being
all other points, and the final result being the average of all of the
AUROC values from all classes. Because this method calculates
AUROC separately for each class, it is possible to obtain a clas-
sification score for when multiple classes are present that is
comparable to when only one class is present (e.g., a perfect
classification score on one class does not preclude a perfect
classification score on a second class in the case when multiple
classes are present at the same time).
For the analyses in our paper, the classification scores for class

k were the correlation coefficients between each test point and
the mean vector of the training examples from class k. To apply
this AUROC measure to our data for the isolated-object de-
coding analysis, we calculated the AUROC in step (v) of our
decoding procedure (Methods). Because the test data were in-
dependent in each cross-validation split of the data, we pooled
all of the classification scores from all test splits together to
create one AUROC value for each bootstrap run, which is
a method that is commonly used to obtain an average AUROC
value over many splits of the data (5) (this pooling method had
the benefit of giving 16 positive test examples and 176 negative
examples when constructing the ROC curve, which presumably
led to a more stable estimate than calculating the ROC area
separately on each split of the data where there would only be 1
positive example and 15 negative examples from which to create
a curve). When calculating the AUROC for the cluttered data,
there was only one test set (i.e., no cross-validation was used), so
no pooling was done. When calculating the AUROC for the
attended object for class k, data from trials when class k was the
attended object were used as positive scores and data from trials
when object k was not shown were used as negative scores (data
from trials when objects of class k were the nonattended object
were not used in the analysis). Likewise, when calculating the
AUROC for the nonattended objects, data from trials when the
object k was the nonattended object were used to create the posi-
tive scores for the positive class and data from trials when object k
was not shown were used to create the negative scores. We decided
to also plot Fig. 2 using the AUROC measure rather than the zero-
one loss measure to allow an easier comparison with Fig. 1B, al-
though unlike Fig. 1B it would be possible to use the zero-one loss
measure for this figure without introducing a bias.

Assessing Statistical Significance of the Decoding Results. Permuta-
tion tests were used to assess the significance of the results. To
assess whether the decoding accuracy for the isolated objects was
higher than the decoding accuracy for the three-object displays
in Fig. 1B, we ran the decoding analyses simultaneously for the
isolated-object results and the cluttered results (i.e., we trained
a classifier on isolated-object data, and then tested both the
isolated-object data and the cluttered data using the same clas-
sifier), and we saved all of the classification scores. We then
calculated the real isolated-object AUROC value as described

Zhang et al. www.pnas.org/cgi/content/short/1100999108 1 of 9

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1100999108/-/DCSupplemental/pnas.201100999SI.pdf?targetid=nameddest=SF7
www.pnas.org/cgi/content/short/1100999108


above and also created a null distribution that assumed there
was no difference between the isolated-object results and the
cluttered-display results. To create a single point from this null
distribution, the same number of target present (absent) clas-
sification scores from isolated-object trials was randomly se-
lected from the combination of target present (absent) clas-
sification scores from isolated-object and cluttered-display
trials. The random selection of points was done separately for
each class, and the same randomly selected points were used for
all 50 bootstrap runs, thus emulating one full decoding analysis
with randomly shuffled labels. The results were then averaged
over all classes and all bootstrap runs to create one point in the
null distribution that was equivalent to the real isolated-object
decoding accuracy. This procedure was repeated 1,000 times to
get a full null distribution, and the P value was found by as-
sessing how many of the points in the null distribution were
greater than the real isolated-object AUROC accuracy. The
results showed that by 75 ms after stimulus array onset (±75 ms
to account for the fact that a 150-ms bin was used), none of the
points in the null distribution were greater than the real iso-
lated-object AUROC accuracy (thus yielding a P value of less
than 0.001), and this remained the case into the time period
when the target object changed color. It is interesting to note
that when the procedure was done using a null distribution that
consisted of the isolated-object and attended-object classifica-
tion scores (but not including the nonattended-object classifi-
cation scores) the P value was greater than 0.01 at 475 ms after
the cue onset and became greater than 0.10 at 525 ms after the
cue onset, indicating that the isolated-object accuracy was be-
coming indistinguishable from the attended-object accuracy
around those times.
To assess whether the decoding accuracies were higher for the

attended stimulus compared with the nonattended stimuli (Fig.
1B), we ran a procedure in which we randomly shuffled the labels
that indicated which stimulus was attended and which stimuli
were nonattended when calculating the classification accuracy
for the attended and nonattended stimuli. The procedure en-
tailed randomly shuffling the attended and nonattended labels,
and then running 10 bootstrap iterations of the cross-validation
procedure using these shuffled labels to generate one sample
from a null distribution for the attended stimuli and one sample
from the null distribution for the nonattended stimuli (only 10
bootstrap iterations were used to save computation time). This
procedure was then repeated 500 times to generate null dis-
tributions for the attended and nonattended stimuli which rep-
resented what would be the expected classification accuracy that
would occur if there was no difference between the classification
accuracies between the attended and nonattended stimuli. Time
points were then found in which the real classification accuracy
for the attended stimulus was higher than the classification
accuracy for the attended stimulus’s null distribution at a level
of P < 0.01 (i.e., time points where five or fewer points from the
attended null distribution were higher than the real attended
stimuli decoding accuracy). Likewise, time points were found
where the nonattended decoding accuracies were lower than
the null distribution for the nonattended stimuli at P < 0.01.
The results from this procedure showed that at 150 ms after the
onset of the cue, both the attended decoding accuracies and the
nonattended decoding accuracies dropped below the P < 0.01
level (and by the next time point, none of the values in the null
distributions exceeded the values for the actual decoding ac-
curacies until the end of the experiment, i.e., P < 0.002).
To assess whether information about the position of the

attended stimulus in clutter was above chance (Fig. 1C), we ran
a permutation test in which we randomly shuffled the attended
location labels and ran the full clutter position decoding exper-
iment. This procedure was done 200 times to obtain a null dis-

tribution, and the actual attended location position decoding
accuracy was compared with this null distribution. Starting at 200 ±
75 ms after cue onset, none of the values in the null distribution
were greater than the actual position decoding values (i.e., the P
value was less than 0.005), and this lasted into the time period
when stimuli began to undergo color changes.

Noise Correlation Analyses. Before analyzing whether noise cor-
relations impact decoding performance, we first examined the
level of noise correlations as a function of signal correlation for
the 623 pairs of neurons in our dataset that had been recorded
simultaneously, using the standard methods that have been used
in previous studies (10, 11). Theoretical work has illustrated that
if noise correlations are stronger for neurons that have higher
signal correlations, then decoding accuracies could be lower in
the presence of noise correlations (12). Similar to previous
findings (10, 11), noise correlations in our dataset appear to
increase with signal correlations [and were similar or perhaps
a little stronger than previously reported noise correlations;
these previous studies showed an increase in noise correlations
of ∼0.10 (or possibly a little less) going from the least signal-
correlated neurons to the most signal-correlated neurons, which
is the range we tried to match when we added noise correlations
to our data]. It should be noted, however, that the rise of noise
correlations with signal correlations seen in our data could be
due to correlated noise creating “fake” signal correlations
(combined with limited sampling). Indeed, we noticed that if we
calculated noise and signal correlations during the fixation pe-
riod before the stimuli were shown, we saw the same trend of
increasing noise correlations with increasing signal correlations
even when we used the labels for the upcoming stimuli that had not
been shown yet to calculate the signal correlations (Fig. S6A
Left). Thus, the signal and noise correlation relationship in our
data could very well be an artifact. Given that examining noise
correlations was not the focus of this paper, we decided not to
pursue this issue further.
To examine whether noise correlations had a large impact on

decoding accuracy, we added noise correlations to our pseudo-
population vectors using two different methods. The first method,
which we call “multiplicative uniform noise,” involved multiply-
ing our pseudopopulation vectors by random variables drawn
from a uniform distribution over the interval [1 10]. The second
method, which we call “additive Gaussian noise,” involved gen-
erating random vectors using a multivariate Gaussian distribu-
tion that had zero mean and a covariance matrix that was based
on neurons’ signal correlations, and these randomly generated
vectors were scaled by 0.001 and added to the pseudopopulation
vectors (the uniform distribution interval of [1 10] and the
scaling factor of 0.001 were chosen so that they would give rise to
noise correlations that were of similar magnitude to those seen
in the real data). As can be seen in Fig. S6B, both methods
created noise correlations that increased with increasing signal
correlations, and these noise correlations had a similar range of
values as those seen in our data and in previous studies (10, 11).
Our decoding procedure was then applied to pseudopopulations
that had noise correlations induced by either multiplicative
uniform noise (Fig. S6C Left) or by additive Gaussian noise (Fig.
S6C Right) using a correlation coefficient classifier [new noise
correlations were added each time new pseudopopulations were
created; i.e., noise correlations were added before z-score nor-
malization in step (iii) of our decoding procedure]. As can be
seen, using populations with noise correlations led to only a
slight decrease in the decoding accuracy, which suggests that
classifier performance can be robust to at least some forms of
noise correlations that are commonly seen in data.
Additional supplementary web material that contains related

results can be found online (14).
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Fig. S1. Stimulus sets. The stimuli came from four categories (face, couch, car, or fruit). Two-thirds of the multiple-object trials consisted of all three images
from the same category, and one-third of the trials consisted of images from different categories. For all analyses reported in this paper, all images were
treated the same (i.e., the category of the stimuli was ignored).
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Fig. S2. Graphs showing decoding results for both monkeys separately. The two monkeys show a similar pattern of reduced decoding accuracy when multiple
objects are presented (red and green traces) compared with when only a single object is presented (blue trace) before the onset of the attentional cue. After
the onset of the attentional cue (indicated by the black vertical line at ∼500 ms), information about the attended object increased (red trace), whereas in-
formation about the nonattended objects decreased (green trace) for both monkeys. Because the results were similar for both monkeys, we combined data
from both monkeys for all other analyses. The findings are in agreement with Agram et al. (1), who also showed decreased performance when multiple objects
were present.

1. Agam Y, et al. (2010) Robust selectivity to two object images in human visual cortex. Current Biology 20:872–879.
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Fig. S3. Replication of the results on a second stimulus set. (A) We replicated the experiment on the second monkey using a new stimulus set that consisted of
seven unique objects (B–D). The decoding results were similar to those with 16 stimuli, except the decoding accuracy for the attended object did not reach the
accuracy seen for the isolated object. (E) Replication of the results in Fig. 2 using the seven-stimulus set. (F) Replication of the results in Fig. 3 using the seven-
stimulus set. Chance performance is 1/7, or 14.29%.
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Fig. S4. Effects of attention on firing rates averaged across the population of cells. (A) Z-score–normalized firing rates to the “best stimulus” (the stimulus that
elicited the highest firing rate) and the “worst stimulus” (the stimulus that elicited the lowest firing rate) on isolated-object trials (red and blue traces), and on
three object trials (magenta and cyan traces). The best and worst stimuli were found using data on isolated-object trials using a time period from 100 to 400 ms
after stimulus onset (gray shaded region). To highlight the attention-related effects (and ignore the stimulus-based effects) in the three-object data, only the
three-object trials that had both the best and worst stimuli were used in this analysis. To correct for selection biases on the isolated-object results, we randomly
shuffled the labels of the stimuli, found the best and worst stimuli on these shuffled data, and subtracted these randomly shuffled best to worst firing rates
from the best and worst firing rates obtained from the real stimuli. The results were averaged over all neurons and the colored shaded regions are one SEM. (B)
Z-score–normalized firing rates for the stimulus that was cued on the three-object trials, sorted from the best to worst stimulus as determined on isolated-
object trials. Before attention was deployed the ranking seen on isolated-object trials was preserved (Left), and after attention was deployed this ranking was
accentuated for the attended stimulus and largely abolished for the nonattended stimulus.
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Fig. S5. Reaction times were slower when the target changed color soon after the distractor changed color. The distribution of reaction times on trials when
the time difference between the target and distractor color change was 20–60 ms (blue trace) was compared with when the time difference was 100–150 ms
(red trace). As can be seen, the distributions were shifted to longer reaction times when the time between the target and distractor changes was short. This
increase in reaction time could be related to the fact that changes in distractor saliency caused information in inferior temporal cortex to be dominated by
properties related to the distractor immediately following the distractor color change.
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Fig. S6. Adding noise correlations had only a slight impact on population decoding accuracy. (A) Noise correlations as a function of signal correlations for the
isolated-object trials (blue traces) and for the attended object in the three-object trials (magenta traces) for the fixation (Left) and cue periods (Right). The
signal correlations during the fixation period were calculated using the upcoming stimuli, and are therefore essentially meaningless—so the fact that noise
correlations still increase with signal correlations is an artifact at least for the baseline period (see SI Text for more details). (B) To add noise correlations to our
pseudopopulation data, we either multiplied our pseudopopulation with uniform random variables in the range of [1 10] (Left) or added scaled zero-mean
Gaussian noise vector using the signal correlations as the covariance matrix (Right). The noise correlations we created were of similar magnitude to those seen
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Fig. S7. Different measures of decoding accuracy yielded similar results. All results in this figure are for decoding the isolated object or the attended and
nonattended objects (i.e., the same decoding problem as in Fig. 1B). (A) Zero-one loss results (results from the nonattended objects have been divided by 2 to
equalize chance performance because there are two correct classes on each cluttered display). This measure is the most widely used decoding accuracy
measure; however, biases can arise when using it to decode multiple objects from data from a single trial (see SI Text on measuring decoding accuracy). (B)
Normalized-rank decoding accuracy (4). This measure can also be biased when decoding multiple objects from a single trial. (C) Average correlation coefficient
values. These correlation coefficient values (which are the same as the classification scores that went into creating the AUROC measure) are unbiased in the
multiple-object setting; however, they do not give a real measure of how often objects will be incorrectly decoded but instead just assess the similarity of the
population activity on a given trial to the different class mean vectors (i.e., one could have equal average correlation coefficient values under different
conditions but still be better at decoding under one condition due to less trial-by-trial variability in these values). (D) AUROC results (same as Fig. 1B). This
method gives a decoding measure that allows one to compare the accuracy for multiple-object predictions from a single trial in an unbiased way.

in our data and to those seen in the previous literature (10, 11). Results shown here are from the cue period, although similar noise correlations were created
for data from all time periods. (C) Decoding accuracies on pseudopopulations that included either the multiplicative uniform noise (Left, cyan trace) or the
additive Gaussian noise (Right, cyan trace) were only slightly lower than the decoding accuracy on the original pseudopopulations that did not include noise
correlations (blue traces). This tentatively suggests that noise correlations might not have a large impact on decoding accuracies (at least for the classifiers
used). However, more thorough analysis using data that were recorded simultaneously is needed before any strong conclusions can be drawn.
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Fig. S8. The neural code for the identity of the stimuli is largely stationary over the time course of a trial. Previous work (1, 13) has found that more abstract/
memory-related information is coded by a dynamic population code (i.e., different patterns of neural activity contain information about the same variables at
different points in time in an experiment), whereas more visual-based information is contained in a static code (i.e., the same pattern of neural activity codes
for an object at all time points in a trial). To test whether a dynamic or static code was present in this experiment, we trained the classifier at one point in time
(using 150 ms of data) and then tested the classifier at either the same or a different time period. The results suggest that the code for the identity of the
stimuli in this experiment was largely static (as indicated by the fact that there is not a strong diagonal of high decoding accuracy in the figure), which is
consistent with previous findings. Based on the fact that the neural code for identity information was static (and that the highest decoding accuracies occurred
when the stimuli were first shown), we trained the classifier using 500 ms of data from when the stimuli were first shown and tested at all other time points
(although similar results were obtained when training with sliding 150-ms bins).
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